大沼 貴之オオヌマ タカユキ


所属部署名農学部 バイオサイエンス学科 / 農学研究科
Last Updated :2018/02/22

コミュニケーション情報 byコメンテータガイド





  •   2015年04月,  - 現在, 近畿大学(准教授)
  •   2012年, 近畿大学(講師)
  •   2008年, 近畿大学(助教)



  • 農芸化学, 応用生物化学
  • 境界農学, 応用分子細胞生物学


  • キチンオリゴ糖, ITC


  • Crystal structure and thermodynamic dissection of chitin oligosaccharide binding to the LysM module of chitinase-A from Pteris ryukyuensis., Ohnuma T, Taira T, Umemoto N, Kitaoku Y, Sørlie M, Numata T, Fukamizo T, Biochemical and biophysical research communications,   2017年08月, 査読有り
  • A class III chitinase without disulfide bonds from the fern, Pteris ryukyuensis: crystal structure and ligand-binding studies., Kitaoku Y, Umemoto N, Ohnuma T, Numata T, Taira T, Sakuda S, Fukamizo T, Planta, 242, 4, 895, 907,   2015年10月, 査読有り
  • Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase., Shinya S, Nishimura S, Kitaoku Y, Numata T, Kimoto H, Kusaoke H, Ohnuma T, Fukamizo T, The Biochemical journal, 473, 8, 1085, 1095,   2016年03月, 査読有り
  • Enzymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding., Tanaka J, Fukamizo T, Ohnuma T, Glycobiology,   2017年02月, 査読有り
  • A glycosynthase derived from an inverting chitinase with an extended binding cleft., Ohnuma T, Dozen S, Honda Y, Kitaoka M, Fukamizo T, Journal of biochemistry, 160, 2, 93, 100,   2016年02月, 査読有り
  • Chitin oligosaccharide binding to the lysin motif of a novel type of chitinase from the multicellular green alga, Volvox carteri., Kitaoku Y, Fukamizo T, Numata T, Ohnuma T, Plant molecular biology, 93, 1-2, 97, 108,   2017年01月, 査読有り
  • Crystal structures and inhibitor binding properties of plant class V chitinases: the cycad enzyme exhibits unique structural and functional features., Umemoto N, Kanda Y, Ohnuma T, Osawa T, Numata T, Sakuda S, Taira T, Fukamizo T, The Plant journal : for cell and molecular biology, 82, 1, 54, 66,   2015年04月, 査読有り
  • The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions., Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T, International journal of biological macromolecules, 93, Pt A, 1111, 1117,   2016年12月, 査読有り
  • Purification, cDNA cloning, and characterization of LysM-containing plant chitinase from horsetail (Equisetum arvense)., Inamine S, Onaga S, Ohnuma T, Fukamizo T, Taira T, Bioscience, biotechnology, and biochemistry, 79, 8, 1296, 1304,   2015年, 査読有り
  • Modulation of the transglycosylation activity of plant family GH18 chitinase by removing or introducing a tryptophan side chain., Umemoto N, Ohnuma T, Osawa T, Numata T, Fukamizo T, FEBS letters, 589, 18, 2327, 2333,   2015年08月, 査読有り
  • NMR assignments and ligand-binding studies on a two-domain family GH19 chitinase allergen from Japanese cedar (Cryptomeria japonica) pollen., Takashima T, Ohnuma T, Fukamizo T, Biomolecular NMR assignments,   2016年12月, 査読有り
  • Interaction of di-N-acetylchitobiosyl moranoline with a family GH19 chitinase from moss, Bryum coronatum., Shinya S, Urasaki A, Ohnuma T, Taira T, Suzuki A, Ogata M, Usui T, Lampela O, Juffer AH, Fukamizo T, Glycobiology, 24, 10, 945, 955,   2014年10月, 査読有り
  • Crystal structure of a "loopless" GH19 chitinase in complex with chitin tetrasaccharide spanning the catalytic center., Ohnuma T, Umemoto N, Nagata T, Shinya S, Numata T, Taira T, Fukamizo T, Biochimica et biophysica acta, 1844, 4, 793, 802,   2014年04月, 査読有り
  • Mutation strategies for obtaining chitooligosaccharides with longer chains by transglycosylation reaction of family GH18 chitinase., Sirimontree P, Suginta W, Sritho N, Kanda Y, Shinya S, Ohnuma T, Fukamizo T, Bioscience, biotechnology, and biochemistry, 78, 12, 2014, 2021,   2014年, 査読有り
  • Crystallization and preliminary X-ray diffraction analysis of an active-site mutant of `loopless' family GH19 chitinase from Bryum coronatum in a complex with chitotetraose., Ohnuma T, Umemoto N, Taira T, Fukamizo T, Numata T, Acta crystallographica. Section F, Structural biology and crystallization communications, 69, Pt 12, 1360, 1362,   2013年12月, 査読有り
  • Production of chitooligosaccharides from Rhizopus oligosporus NRRL2710 cells by chitosanase digestion., Mahata M, Shinya S, Masaki E, Yamamoto T, Ohnuma T, Brzezinski R, Mazumder TK, Yamashita K, Narihiro K, Fukamizo T, Carbohydrate research, 383, 27, 33,   2014年01月, 査読有り
  • The first identification of carbohydrate binding modules specific to chitosan., Shinya S, Ohnuma T, Yamashiro R, Kimoto H, Kusaoke H, Anbazhagan P, Juffer AH, Fukamizo T, The Journal of biological chemistry, 288, 42, 30042, 30053,   2013年10月, 査読有り
  • A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding., Lacombe-Harvey MÈ, Fortin M, Ohnuma T, Fukamizo T, Letzel T, Brzezinski R, BMC biochemistry, 14, 23,   2013年09月, 査読有り
  • Complete subsite mapping of a "loopful" GH19 chitinase from rye seeds based on its crystal structure., Ohnuma T, Umemoto N, Kondo K, Numata T, Fukamizo T, FEBS letters, 587, 16, 2691, 2697,   2013年08月, 査読有り
  • A novel transition-state analogue for lysozyme, 4-O-β-tri-N-acetylchitotriosyl moranoline, provided evidence supporting the covalent glycosyl-enzyme intermediate., Ogata M, Umemoto N, Ohnuma T, Numata T, Suzuki A, Usui T, Fukamizo T, The Journal of biological chemistry, 288, 9, 6072, 6082,   2013年03月, 査読有り
  • Bifidobacterial α-galactosidase with unique carbohydrate-binding module specifically acts on blood group B antigen., Wakinaka T, Kiyohara M, Kurihara S, Hirata A, Chaiwangsri T, Ohnuma T, Fukamizo T, Katayama T, Ashida H, Yamamoto K, Glycobiology, 23, 2, 232, 240,   2013年02月, 査読有り
  • Introduction of a tryptophan side chain into subsite +1 enhances transglycosylation activity of a GH-18 chitinase from Arabidopsis thaliana, AtChiC., Umemoto N, Ohnuma T, Mizuhara M, Sato H, Skriver K, Fukamizo T, Glycobiology, 23, 1, 81, 90,   2013年01月, 査読有り
  • Backbone chemical shifts assignments, secondary structure, and ligand binding of a family GH-19 chitinase from moss, Bryum coronatum., Shinya S, Nagata T, Ohnuma T, Taira T, Nishimura S, Fukamizo T, Biomolecular NMR assignments, 6, 2, 157, 161,   2012年10月, 査読有り
  • Crystal structure and chitin oligosaccharide-binding mode of a 'loopful' family GH19 chitinase from rye, Secale cereale, seeds., Ohnuma T, Numata T, Osawa T, Inanaga H, Okazaki Y, Shinya S, Kondo K, Fukuda T, Fukamizo T, The FEBS journal, 279, 19, 3639, 3651,   2012年10月, 査読有り
  • タバコクラスVキチナーゼの結晶化とX線回折実験, 大沼 貴之, 独立行政法人産業技術総合研究所 バイオメディカル研究部門RNAプロセシング研究グループ , 独立行政法人産業技術総合研究所 バイオメディカル研究部門RNAプロセシング研究グループ, Acta Crystallogr Sect F Struct Biol Cryst Commun., 66, 12, 1599, 15601,   2010年12月, 査読有り
    概要:The plant chitinases, which have been implicated in self-defence against pathogens, are divided into at least five classes (classes I, II, III, IV and V). Although the crystal structures of several plant chitinases have been solved, no crystal structure of a class V chitinase has been reported to date. Here, the crystallization of Nicotiana tabacum class V chitinase (NtChiV) using the vapour-diffusion method is reported. The NtChiV crystals diffracted to 1.2?? resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 62.4, b = 120.3, c = 51.9??. The asymmetric unit of the crystals is expected to contain one molecule.
  • A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum., Ohnuma T, Fukuda T, Dozen S, Honda Y, Kitaoka M, Fukamizo T, The Biochemical journal, 444, 3, 437, 443,   2012年06月, 査読有り
  • Chitin-related enzymes in agro-biosciences., Arakane Y, Taira T, Ohnuma T, Fukamizo T, Current drug targets, 13, 4, 442, 470,   2012年04月, 査読有り
  • Role of tryptophan residues in a class V chitinase from Nicotiana tabacum., Umemoto N, Ohnuma T, Urpilainen H, Yamamoto T, Numata T, Fukamizo T, Bioscience, biotechnology, and biochemistry, 76, 4, 778, 784,   2012年, 査読有り
  • Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum., Ohnuma T, Sørlie M, Fukuda T, Kawamoto N, Taira T, Fukamizo T, The FEBS journal, 278, 21, 3991, 4001,   2011年11月, 査読有り
  • Interaction of a goose-type lysozyme with chitin oligosaccharides as determined by NMR spectroscopy., Shinya S, Ohnuma T, Kawamura S, Torikata T, Nishimura S, Katoh E, Fukamizo T, Journal of biochemistry, 150, 5, 569, 577,   2011年11月, 査読有り
  • A class V chitinase from Arabidopsis thaliana: gene responses, enzymatic properties, and crystallographic analysis., Ohnuma T, Numata T, Osawa T, Mizuhara M, Lampela O, Juffer AH, Skriver K, Fukamizo T, Planta, 234, 1, 123, 137,   2011年07月, 査読有り
  • Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum)., Taira T, Mahoe Y, Kawamoto N, Onaga S, Iwasaki H, Ohnuma T, Fukamizo T, Glycobiology, 21, 5, 644, 654,   2011年05月, 査読有り
  • Chitinase-catalyzed hydrolysis of 4-nitrophenyl penta-N-acetyl-β-chitopentaoside as determined by real-time ESIMS: the 4-nitrophenyl moiety of the substrate interacts with the enzyme binding site., Letzel T, Sahmel-Schneider E, Skriver K, Ohnuma T, Fukamizo T, Carbohydrate research, 346, 6, 863, 866,   2011年05月, 査読有り
  • Crystal structure and mode of action of a class V chitinase from Nicotiana tabacum., Ohnuma T, Numata T, Osawa T, Mizuhara M, Vårum KM, Fukamizo T, Plant molecular biology, 75, 3, 291, 304,   2011年02月, 査読有り
  • Chitinase from Autographa californica multiple nucleopolyhedrovirus: rapid purification from Sf-9 medium and mode of action., Fukamizo T, Sato H, Mizuhara M, Ohnuma T, Gotoh T, Hiwatashi K, Takahashi S, Bioscience, biotechnology, and biochemistry, 75, 9, 1763, 1769,   2011年, 査読有り
  • Transglycosylation reaction catalyzed by a class V chitinase from cycad, Cycas revoluta: a study involving site-directed mutagenesis, HPLC, and real-time ESI-MS., Taira T, Fujiwara M, Dennhart N, Hayashi H, Onaga S, Ohnuma T, Letzel T, Sakuda S, Fukamizo T, Biochimica et biophysica acta, 1804, 4, 668, 675,   2010年04月, 査読有り
  • A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification., Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi G, Iwasaki H, Ohnuma T, Fukamizo T, Glycobiology, 19, 12, 1452, 1461,   2009年12月, 査読有り
  • A flexible loop controlling the enzymatic activity and specificity in a glycosyl hydrolase family 19 endochitinase from barley seeds (Hordeum vulgare L.)., Fukamizo T, Miyake R, Tamura A, Ohnuma T, Skriver K, Pursiainen NV, Juffer AH, Biochimica et biophysica acta, 1794, 8, 1159, 1167,   2009年08月, 査読有り
  • LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site., Ohnuma T, Onaga S, Murata K, Taira T, Katoh E, The Journal of biological chemistry, 283, 8, 5178, 5187,   2008年02月, 査読有り
  • Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii,Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures., Sawano M, Yamamoto H, Ogasahara K, Kidokoro S, Katoh S, Ohnuma T, Katoh E, Yokoyama S, Yutani K, Biochemistry, 47, 2, 721, 730,   2008年01月, 査読有り
  • Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs., Suzukawa K, Yamagami T, Ohnuma T, Hirakawa H, Kuhara S, Aso Y, Ishiguro M, Bioscience, biotechnology, and biochemistry, 67, 2, 341, 346,   2003年02月, 査読有り
  • A patient with paroxysmal nocturnal haemoglobinuria in whom granulocyte colony-stimulating factor administration resulted in improvement of recurrent enterocolitis and its associated haemolytic attacks., Fujimi A, Matsunaga T, Kogawa K, Ohnuma T, Takahira N, Abe T, Kitaoka K, Kogawa T, Tanaka I, Morii K, Terui T, Sakamaki S, Kato J, Kura T, Maeda T, Niitsu Y, British journal of haematology, 119, 3, 858, 862,   2002年12月, 査読有り


  • Protein and Peptide Analysis by LC-MS: Experimental Strategies (RSC Chromatography Monographs), Royal Society of Chemistry,   2011年08月08日, 1849731829
  • キチン、キトサン、オリゴ糖およびその誘導体‐生物活性とその利用‐, 大沼 貴之, 深溝 慶, Department of Chemistry Director, Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea, 共著, CRC press,   2010年07月


  • キチン質分解酵素の構造と機能および利用に関する研究, 大沼貴之, 応用糖質科学, 6, 1, 15, 20,   2016年02月20日,
  • 等温滴定型カロリメトリーを用いた生体分子間相互作用解析, 北奥喜仁, 大沼貴之, 化学と生物, 53, 12, 834, 842,   2015年11月20日,
  • キチン質分解酵素の構造と機能および利用に関する研究, 大沼貴之, 応用糖質科学, 5, 3, 29,   2015年08月20日,
  • 糖質関連酵素の最近の進歩‐2 リゾチーム遷移状態アナログの設計に基づく反応機構の検証, 尾形慎, 碓氷泰市, 梅本尚之, 大沼貴之, 深溝慶, 沼田倫征, 化学と生物, 52, 12, 819, 824,   2014年12月01日, 10.1271/kagakutoseibutsu.52.819,
  • キチン質の酵素分解とオリゴ糖合成研究の新展開 植物キチナーゼの構造と機能,その利用, 大沼貴之, 平良東紀, 応用糖質科学, 4, 2, 121, 126,   2014年05月20日,
  • リゾチーム・スーパーファミリーに属する酵素群の基質結合様式, 新家 粧子, 永田 琢也, 大沼 貴之, 深溝 慶, キチン・キトサン研究 = Chitin and chitosan research, 18, 1, 58, 64,   2012年04月01日,
  • ノルウェイの森から, 大沼 貴之, 応用糖質科学 : 日本応用糖質科学会誌 = Bulletin of applied glycoscience, 1, 1,   2011年01月20日,
  • 特異な糖質結合モジュールLysMドメインの構造と機能 : 溶菌やエリシター受容体など多様な機能をもつドメインとリガンドとの相互作用, 大沼 貴之, 翁長 彰子, 深溝 慶, 平良 東紀, 化学と生物, 47, 10, 676, 677,   2009年10月01日, 10.1271/kagakutoseibutsu.47.676,
  • 糖質加水分解酵素における反応解析法の進展 : HPLCからHPAEC-PAD, ESI-MSへ, 深溝 慶, 大沼 貴之, 化学と生物, 47, 6, 404, 411,   2009年06月01日, 10.1271/kagakutoseibutsu.47.404,
  • シダ植物 Pteris ryukyuensis 由来キチナーゼに存在するファミリー50糖質結合モジュール(LysMドメイン)の構造と機能, 大沼 貴之, 翁長 彰子, 村田 勝義, 深溝 慶, 平良 東紀, 加藤 悦子, Journal of applied glycoscience, 56, 2, 97, 104,   2009年04月20日,
  • Molecular Cloning, Functional Expression, and Mutagenesis of cDNA Encoding Class I Chitinase from Rye (Secale cereale) Seeds, Ohnuma Takayuki, Taira Toki, Yamagami Takeshi, ASO Yoichi, ISHIGURO Masatsune, Bioscience, biotechnology, and biochemistry, 68, 2, 324, 332,   2004年02月23日, 10.1271/bbb.68.324,
    概要:A cDNA encoding rye seed chitinase-a (RSC-a) was cloned by rapid amplification of cDNA ends and PCR procedures. It consists of 1,191 nucleotides and encodes an open reading frame of 321 amino acid residues. Recombinant RSC-a (rRSC-a) was produced in the oxidative cytoplasm of Escherichia coli Origami(DE3) in a soluble form by inducing bacteria at a low temperature (20°C). Purified rRSC-a showed properties similar to the original enzyme from rye seeds in terms of chitinase activity toward a soluble substrate, glycolchitin, and an insoluble substrate, chitin beads, in chitin-binding ability to chitin, and in antifungal activity against Trichoderma sp. in vitro. rRSC-a mutants were subsequently produced and purified by the same procedures as those for rRSC-a. Mutation of Trp23 to Ala decreased the chitinase activity toward both substrates and impaired the chitin-binding ability. Furthermore, the antifungal activity of this mutant was weakened with increasing of the NaCl concentration in the culture medium. Complete abolishment of both activities was observed upon the mutation of Glu126 to Gln. The roles of these residues in both activities are discussed.
  • Mutational Analysis of Amino Acid Residues Involved in Catalytic Activity of a Family 18 Chitinase from Tulip Bulbs(Biochemistry & Molecular Biology), Suzukawa Keisuke, Yamagami Takeshi, Ohnuma Takayuki, HIRAKAWA Hideki, KUHARA Satoru, ASO Yoichi, ISHIGURO Masatsune, Bioscience, biotechnology, and biochemistry, 67, 2, 341, 346,   2003年02月23日, 10.1271/bbb.67.341,
    概要:We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.
  • Antifungal Activity of Rye (Secale cereale) Seed Chitinases : the Different Binding Manner of Class I and Class II Chitinases to the Fungal Cell Walls(Biochemistry & Molecular Biology), Taira Toki, Ohnuma Takayuki, Yamagami Takeshi, ASO Yoichi, ISHIGURO Masatsune, ISHIHARA Masanobu, Bioscience, biotechnology, and biochemistry, 66, 5, 970, 977,   2002年05月23日, 10.1271/bbb.66.970,
    概要:The antifungal activities of rye seed chitinase-a (RSC-a, class I) and -c (RSC-c, class II) were studied in detail using two different bioassays with Trichoderma sp. as well as binding and degradation experiments with the cell walls prepared from its mycelia. RSC-a inhibited more strongly the re-extension of the hyphae, containing mainly mature cells, than RSC-c did. Upon incubation of the fungus with fluorescent chitinases, FITC-labeled RSC-a was found to be located in the hyphal tips, lateral walls, and septa, while FITC-labeled RSC-c was only in the hyphal tip. RSC-a had a greater affinity for the cell walls than RSC-c. RSC-a liberated a larger amount of reducing sugar from the cell walls than RSC-c did. These results inferred that RSC-a first binds to the lateral walls and septa, consisting of the mature cell walls, and degrades mature chitin fiber, while RSC-c binds only to the hyphal tip followed by degradation of only nascent chitin. As a result, RSC-a inhibited fungal growth more effectively than RSC-c. Furthermore, it was suggested that the chitin-binding domain in RSC-a assists the antifungal action of RSC-a by binding to the fungal hypha.
  • Molecular Cloning, Functional Expression, and Mutagenesis of cDNA Encoding Rye (Secale cereale) Seed Chitinase-c(Biochemistry & Molecular Biology), Ohnuma Takayuki, Yagi Mikako, Yamagami Takeshi, TAIRA Toki, ASO Yoichi, ISHIGURO Masatsune, Bioscience, biotechnology, and biochemistry, 66, 2, 277, 284,   2002年02月23日, 10.1271/bbb.66.277,
    概要:We cloned a complete cDNA encoding rye seed chitinase-c, designated RSC-c, by rapid amplification of cDNA end and PCR procedures. The cDNA of RSC-c consists of 1,018 nucleotides and includes an open reading frame encoding a polypeptide of 266 amino acid residues. A recombinant RSC-c was produced by expression in Escherichia coli Origami(DE3) and purified. rRSC-c had almost the same chitinase activity toward glycolchitin and antifungal activity against Trichoderma sp. as the authentic RSC-c did. RSC-c mutants were subsequently constructed and characterized with respect to their chitinase and antifungal activities. Mutation of Glu67 to Gin completely abolished the chitinase activity and diminished the antifungal activity. Considerable decreases in both activities were observed in the mutations of Trp72 and Ser120 to Ala, and Glu89 to Gln. The roles of these residues in the catalytic event of RSC-c are discussed.
  • Screening and Production of Arylsulfatases for Target Therapy with Etoposide 4'-Sulfate,an Antitumor Prodrug, Yamamoto Satoshi, Ueki Tomokazu, Tomita Koji, Ohnuma Takeshi, Sawada Yosuke, Fukagawa Yasuo, Oki Toshikazu, Bioscience, biotechnology, and biochemistry, 59, 6, 1057, 1061,   1995年06月23日, 10.1271/bbb.59.1057,
    概要:Two arylsulfatase-producing streptomycetes that desulfated etoposide 4'-sulfate were isolated from soil samples. Taxonomical study identified one soil isolate as Streptomyces griseorubiginosus S980-14 (Es-1 arylsulfatase producer), while the other was considered new and tentatively designated Streptomyces sp. T109-3 (Es-2 arylsulfatase producer). Both strains produced extracellular arylsulfatase activities, provided that cultivation media were prepared with distilled water. Unlike the two known types of arylsulfatases, which had significant activity on p-nitrophenyl sulfate but none on etoposide 4'-sulfate, the crude streptomycete arylsulfatases efficiently desulfated etoposide 4'-sulfate and p-nitrophenyl sulfate, which supports the establishment of a new type of arylsulfatases.


  •   2017年08月, 日本キチン・キトサン学会, 日本キチン・キトサン学会奨励賞, キチン分解酵素の構造と機能および糖鎖合成への応用
  •   2015年09月, 日本応用糖質科学会, 日本応用糖質科学会奨励賞, キチン質分解酵素の構造と機能および利用に関する研究