FUJITA Takashi

Department of Mechanical EngineeringAssociate Professor

Last Updated :2024/09/14

■Researcher basic information

Degree

  • Ph.D.(Engineering)(2004/03 Kumamoto University)

Researcher number

40878245

Research Keyword

  • Semiconductor substrate cutting   Pad conditioning   micro-grooving   Chemical-Mechanical Planarization   

Research Field

  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Manufacturing and production engineering / Chemical-mechanical planarization, Pad conditioning
  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Manufacturing and production engineering / Cutting, Grooving
  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Electronic devices and equipment / Semiconductor manufacturing process

■Career

Career

  • 2020/04 - Today  Kindai UniversityFaculty of Science and Engineering
  • 2001/11 - 2020/03  Tokyo Seimitsu Co., Ltd.
  • 1991/04 - 2001/10  Sumitomo Metal Industries, Co., Ltd.

Member History

  • 2024/04 - Today   Precision Engineering Society   proofreading committee
  • 2023/04 - Today   Japan Society of Abrasive Technology, Kansai Region Subcommittee   steering committee

■Research activity information

Award

  • 2024/06 Machine Tool Technology Promotion Foundation Machine Tool Technology Promotion Award/Encouragement Award
     
    受賞者: H. Hashimoto;T. Fujita
  • 2024/05 Mazak Foundation Advanced Manufacturing Systems Outstanding Paper Award
     Polishing Mechanism Based on Morphological and Chemical Quantification of Pad Surface in Chemical Mechanical Planarization 
    受賞者: Takuro Ito;Takashi Fujita;Kaito Yonemoto;Yuki Arai;Hiroyuki Hiyama;Yutaka Wada;Hozumi Yasuda;Ryota Koshino
  • 2023/12 Japan Society for Precision Engineering Chugoku-Shikoku Branch Best Presentation Award
     
    受賞者: R. Fukunaga;T. Fujita;H Konishi;Y. Izumi;J. Watanabe
  • 2023/05 Mazak Foundation Advanced Manufacturing Systems Outstanding Paper Award
     
    受賞者: Haruto KONISHI;Takashi FUJITA;Yasuo IZUMI;Kouji WATANABE;Daisuke YANAGIDA;Hisashi MINAMI;Junji WATANABE
  • 2020/06 Machine Tool Technology Promotion Foundation Technical Paper Award
     Development of Endpoint Detection using Optical Transmittance and Magnetic Permeability based on Skin Effect in Chemical Mechanical Planarization 
    受賞者: Takashi FUJITA, Keita KITADE
  • 2020/03 The Japan Society for Precision Engineering Numata memorial paper award
     Development of Endpoint Detection using Optical Transmittance and Magnetic Permeability based on Skin Effect in Chemical Mechanical Planarization 
    受賞者: Takashi FUJITA;Keita KITADE
  • 2019/10 発明協会 Invention Incentive Award
     輪郭形状表面粗さ測定装置 
    受賞者: Yasuhiro YAMAUCHI;Takashi FUJITA
  • 2018/03 The Japan Society for Abrasive Technology Society award
     Development of PCD dicing blade for SiC semiconductor substrate 
    受賞者: Yasuo IZUMI;Takashi FUJITA;Hisashi MINAMI;Junji WATANABE;Mutsumi TOUGE
  • 2005/03 The Japan Society for Abrasive Technology Technical Paper Award
     長寿命ドレッサーの開発-ドレッシング有効砥粒数の安定化- 
    受賞者: Takashi FUJITA;Junji WATANABE

Paper

  • Mirror-finishing technology for SiC substrates using PCD tools with high-density cutting edges
    Haruto Konishi; Takashi Fujita; Ryota Fukunaga; Yasuo Izumi; Junji Watanabe
    International Conference on Planarization Technology P62-001 - P62-004 2023/11 [Refereed]
  • Polishing Mechanism Based on Morphological and Chemical Quantification of Pad Surface in Chemical Mechanical Planarization
    Takuro Ito; Takashi Fujita; Kaito Yonemoto; Yuki Arai; Hiroyuki Hiyama; Yutaka Wada; Hozumi Yasuda; Ryota Koshino
    International Conference on Planarization Technology O17-001 - O17-008 2023/10 [Refereed]
  • Study of fine groove machining using PCD (Poly-Crystalline Diamond) blade tool
    Haruto KONISHI; Takashi FUJITA; Yasuo IZUMI; Kouji WATANABE; Daisuke YANAGIDA; Hisashi MINAMI; Junji WATANABE
    Proceedings of 19th International Conference on Precision Engineering (C055) 2022/12 [Refereed]
  • Study of Polishing Mechanism by Chemical Properties of Polishing Pad in Chemical-Mechanical Planarization
    Takuro ITO; Takashi FUJITA; Hirokuni HIYAMA; Yutaka WADA; Naoyuki HANDA
    Proceedings of 19th International Conference on Precision Engineering (C056) 2022/11 [Refereed]
  • Michio Uneda; Naoki Takahashi; Takashi Fujita; Yutaro Arai
    International Journal of Automation Technology Fuji Technology Press Ltd. 15 (6) 878 - 884 1881-7629 2021/11 
    Polishing pad conditioning is essential for achieving stable chemical mechanical polishing (CMP). While diamond disk conditioners (DDCs) are often applied, flexible fiber conditioners (FFCs) have been proposed as a new conditioning tool. FFCs are intended for roughening the pad surface appropriately by bundling fine wire fibers. Our previous study demonstrated the fine conditioning characteristics of FFCs for a hard urethane foam pad. In this study, the conditioning characteristics of an FFC are compared with those of a DDC. First, we evaluate the conditioning performance of an FFC using SUS fibers on a soft urethane foam pad. The result indicates that on a soft pad, the SUS-FFC can restore the pad surface asperities more finely, as confirmed via the stabilized number of contact points based on contact image and luminance value distribution analyses. Subsequently, for a metal-contamination-free FFC process intended for semiconductor CMP, we develop an FFC fabricated using polyether ether ketone (PEEK) and verify its performance via the CMP test of a silicon oxide film. It is shown that the hard pad can be conditioned using the developed PEEK-FFC; this implies that a stable removal rate can be realized immediately after pad break-in conditioning.
  • Takashi Fujita
    Thin Solid Films Elsevier BV 709 138233 - 138233 0040-6090 2020/09 [Refereed]
  • Novel Pad Conditioning Techonology by Ceramics Flexible Fiber Conditioner
    Yutaro ARAI; Takashi FUJITA; Michio UNEDA
    International Conference on Planarization / CMP Technology 118 - 119 2019/09
  • Takashi Fujita; Keita Kitade
    Precision Engineering Elsevier BV 57 95 - 103 0141-6359 2019/05 [Refereed]
  • Takashi FUJITA; Yasuo IZUMI; Junji WATANABE
    Journal of Advanced Mechanical Design, Systems, and Manufacturing Japan Society of Mechanical Engineers 13 (4) JAMDSM0073 - JAMDSM0073 2019 [Refereed]
  • Takashi Fujita; Toshiro Doi; Yutaro Arai
    ECS Journal of Solid State Science and Technology The Electrochemical Society 8 (10) P602 - P608 2162-8769 2019 [Refereed]
  • Takashi Fujita; Junji Watanabe
    ECS Journal of Solid State Science and Technology The Electrochemical Society 8 (5) P3069 - P3074 2162-8769 2019 [Refereed]
  • Takashi Fujita; Yasuo Izumi; Junji Watanabe
    Precision Engineering Elsevier BV 55 381 - 389 0141-6359 2019/01 [Refereed]
  • Takashi Fujita; Keita Kitade
    ECS Journal of Solid State Science and Technology Electrochemical Society Inc. 6 (8) P535 - P541 2162-8777 2017 [Refereed]
     
    An original eddy current sensor by making use of skin effect of copper film was developed for end point prediction in CMP (Chemical Mechanical Planarization). The main operation principle is based on detecting a local maximum point of eddy current due to skin effect in the course of film thickness reduction by CMP. This paper focuses on the verification of the operation principle. The verification evaluation using ferrite sheet supported that magnetic field passing through to a copper film is indispensable to operate the end point detection. From the result of both copper film process and tungsten film process, it was apparent that the resonant frequency profile depends on the skin depth of film material. The equivalent circuit model including the plane inductor and copper film indicates that a real part of an impedance of a plane inductor is proportion to the square of mutual inductance corresponding to eddy current induced. The simulation result of the real part of impedance of the plane inductor was a good agreement with actual resonant frequency profile. It was clarified that the operation principle of the end point detection is based on eddy current generation due to skin effect.
  • Takashi Fujita; Junji Watanabe
    ECS Journal of Solid State Science and Technology Electrochemical Society Inc. 6 (7) P462 - P469 2162-8777 2017 [Refereed]
     
    In the Chemical Mechanical Planarization system, the removal profile improvement was attempted by subtly correcting the pressure distribution by means of scraping the underlay assist pad surface made of an elastic solid. As a result of pressure distribution correction, the non-uniformity of the pressure integration was improved from 3% to 0.9%, which results in an improvement from 3.9% to 1.9% in the non-uniformity of the removal rate. Fine adjustment of pressure distribution is the most crucial factor to correct removal profile finely. In addition, the fine adjustment of pressure distribution must be maintained reproducibly to secure stable removal profile. In this study, it was demonstrated that the developed system is a robust polishing system to keep stable pressure distribution without influence on shearing force of polishing. The polishing mechanism is based on the following three features: (1) maintaining a datum plane with a wafer chuck, (2) pressure distribution control using the constitution of the original pad, and (3) a machine configuration that maintains the wafer level in parallel with the pad level.
  • Development of PCD dicing blade for SiC semiconductor substrate
    Yasuo IZUMI; Takashi FUJITA; Hisashi MINAMI; Junji WATANABE; Mutsumi TOUGE
    Journal of Abrasive machining technology 60 (11) 597 - 602 2016/11 [Refereed]
  • Development of Ductile mode grooving with PCD(Poly-crystalline Diamond) Blade
    Yasuo IZUMI; Takashi FUJITA; Hisashi MINAMI; Takeru TSUTSUI; Junji WATANABE; Mutsumi TOUGE
    Proceedings of International Conference on Precision Engineering c207-8107  2016/10
  • Effectiveness Evaluation of Novel Pad Dressing Method by Flexible Fiber Dresser
    Michio UNEDA; Naoki TAKAHASHI; Yutaro ARAI; Takashi FUJITA
    Journal of Abrasive machining technology 159 (8) 459 - 464 2015/08 [Refereed]
  • Takashi Fujita; Junji Watanabe
    ECS Journal of Solid State Science and Technology Electrochemical Society Inc. 4 (11) P5008 - P5015 2162-8777 2015 [Refereed]
     
    An original polishing mechanism with a triple layer pad was developed as a surface conformable polishing mechanism in CMP (Chemical Mechanical Planarization). According to the polishing mechanism, removal profile can be controlled by base plate curvature through an assist pad made of elastic material. A pad system supported by an envelope plane composed of five wafers contributes to make a wafer level paralleled to a pad level relatively during polishing. As the result, a static pressure distribution can be transferred precisely to a dynamic polishing profile regardless of strong shearing force by polishing. In order to verify the polishing removal controllability, an original pressure distribution analysis was developed by an actual pressure distribution measurement around an entire pad surface. The analyzed pressure distribution profile was in good agreement with the actual polishing profile. From the result that the static pressure profile can be transferred to the polishing profile precisely, it was verified that the polishing mechanism is reasonable for surface conformable polishing system in CMP.
  • Long Life Mechanism on a Flexible Fiber Conditioner in CMP
    Yutaro ARAI; Takashi FUJITA; Naoki TAKAHASHI; Michio UNEDA
    International Conference on Planarization / CMP Technology 162 - 166 2014/11
  • Study on 4 inch SiC substrate polishing assisted by ultra-violet ray
    Takeshi SAKAMOTO; Takumi INAGI; Kazuaki ODA; Mutsumi TOUGE; Takashi FUJITA
    Journal of Abrasive machining technology 58 (4) 235 - 240 2014/04 [Refereed]
  • Michio Uneda; Naoki Takahashi; Yutaro Arai; Takashi Fujita
    Advanced Materials Research Trans Tech Publications Ltd 1017 726 - 731 1662-8985 2014 [Refereed]
     
    Chemical mechanical polishing/ planarization (CMP) is a key technology for fabricating high-efficient semiconductor devices, and the CMP characteristics (removal rate and accuracy, etc.) is depended on the various consumables represented by slurry, polishing pad and dresser used in the CMP process. Currently, in the pad, there are many studies that have pointed the evaluation methodology and the correlation between the pad surface asperity and the CMP characteristics. On the other hand, the dresser is one of the most important consumables because the dresser can control the pad surface asperity, and the diamond grains electrodeposited dresser (diamond dresser) is frequently used. One drawback point of the diamond dresser is that the dressing performance declines owing to the deterioration of the diamond grains. Previously, we have developed a novel flexible fiber dresser that would ensure high performance and longer life of tools, and we have reported the fundamental characteristics by the flexible fiber dresser compared with that of the diamond dresser. In this paper, we will show the results of tool life evaluation of the flexible fiber dresser using a contact image analysis method. As a result, the flexible fiber dresser can be continuously used over 35 hours. Furthermore, the result of having examined the stability of the removal rate of a silicon wafer is reported. Therefore, we found that the flexible fiber dresser is one of the most effective dressing methods for the polishing pad.
  • Takashi Fujita; Keita Kitade; Toshiyuki Yokoyama
    Japanese Journal of Applied Physics IOP Publishing 50 (5) 05EC09 - 05EC09 0021-4922 2011/05 [Refereed]
     
    An original end point detection system was developed by making use of the skin effect in chemical mechanical polishing (CMP). The developed system utilizes a critical change in the eddy current due to the skin effect. The critical change is caused by the following two phases in the polishing process. The first phase is that the eddy current increases when the magnetic flux begins to penetrate the copper film as the film thickness reduces to less than 'skin depth'. The next phase is that the eddy current fades out due to substantial elimination of the copper film by further polishing. Consequently, a prominent local maximum point of the eddy current emerges at the turning point between the two phases, which can be detected sensitively before the copper film is eliminated. It was demonstrated that the developed system gains a high sensitivity by making use of a critical change in the eddy current due to the skin effect without exposing the semiconductor device excessively to an intense magnetic flux. © 2011 The Japan Society of Applied Physics.
  • Development on Original End Point Detection Utilizing Eddy Current Variation by Skin Effect in Chemical Mechanical Polishing
    Takashi FUJITA; Keita KITADE; Toshiyuki YOKOYAMA
    Advanced Metallization Conference 2010 20th Asian Session 140 - 141 2010/10
  • Takashi FUJITA; Toshiro DOI; Daichi KAMIKAWA; Junji WATANABE
    Journal of Precision Engineering The Japan Society for Precision Engineering 76 (4) 433 - 437 0912-0289 2010/04 [Refereed]
     
    As a surface reference conditioner, original flexible fiber conditioner was developed to realize uniform pad conditioning in CMP (Chemical Mechanical Polishing). The developed conditioner is composed of a lot of bundles of fine metal fibers to contact pad surface independently. Constant conditioning force can be applied to pad surface with fiber edges regardless of long range of height variation of pad surface. In fact, the developed conditioner made pad surface to be roughened with conforming to a protruding area of 50um on pad surface. Furthermore, an original evaluation on conditioning uniformity was demonstrated quantitatively by making use of relationship between in-depth color variation and pad conditioning depth using dyed pad. As the result, the developed pad conditioning was more uniform entirely across a pad than traditional disk type conditioner. The performance resulted in both contraction of pad break-in process and improvement of removal rate uniformity within wafer in the course of pad break-in process.
  • Development on Novel End Point Prediction using skin-EDDY method in Chemical Mechanical Polishing
    Takashi FUJITA; Keita KITADE; Toshiyuki YOKOYAMA
    International Conference on Planarization/CMP Technology 157 - 162 2009/11
  • Takashi Fujita; Junji Watanabe
    Journal of the Electrochemical Society The Electrochemical Society 156 (6) H479 - H486 0013-4651 2009 [Refereed]
     
    Surface conformable polishing mechanism, which means a uniform removal mechanism conforming to wafer thickness variation, was developed for chemical mechanical polishing. The polishing mechanism provides both global uniform removal regardless of wafer curvature and local planarization to protruding parts on a patterned surface. The improved triple-layer pad contributes to the uniform removal profile on the wafer surface with a long range of height variation. Selective polish function to planarize protruding parts was separated from the uniform polish function to conform to the surface height variation. The two opposite functions could be controlled by stiffness of a deflection film in a surface layer pad. Moreover, the wafer was held with the back-side surface flattened to exclude wafer curvature influence. Consequently, the developed polishing mechanism overcame the traditional problem on the wafer curvature, which has not been solved. Uniform polish with nonuniformity within the wafer of 1.25% was demonstrated using the wafer with a thickness variation of 3 μm. In addition, local planarization was achieved in pattern features from 5 microns to 500 microns. © 2009 The Electrochemical Society.
  • Takashi FUJITA; Minako ISHIKURA; Naoko KAWAI; Yoshitaka MORIOKA
    Journal of Precision Engineering The Japan Society for Precision Engineering 74 (8) 815 - 819 0912-0289 2008/08 [Refereed]
     
    In order to evaluate pad surface condition to stabilize removal rate in oxide-CMP(Chemical Mechanical Polishing), chemical modification on pad surface was evaluated under no conditioning process as an opposite phase. As the result, the pad surface was hydrolyzed in accordance with no conditioning process proceeding. Silanol groups contained in slurry or generated by oxide polish combined with polarized molecules in poly-urethane material of the pad by a hydrogen bond. The pad surface stacked silica component with the silanol groups leads to removal rate drop due to inhibition of chemical reaction to polish oxide film. The pad treatment by means of the following Si substrate polish contributed to removal rate recovery of oxide film. The behavior suggested that not only geometrical factor of pad surface such as asperity or roughness but also chemical factor of pad surface such as hydrophilicity or hybrid formation has an influence on keeping removal rate. The removal rate recovery of oxide film after Si substrate polish was attributed to silanol groups elimination on pad surface which was caused by condensation between silanol groups on pad surface and hydroxyl groups on Si surface.
  • Study on Polishing Mechanism by Pad Surface Analysis (1st report )
    Takashi FUJITA
    Journal of Precision Engineering 73 (9) 1014 - 1018 2007/09 [Refereed]
  • Developement of Bending Fiber Conditioner in Chemical Mechanical Polishing
    Takashi FUJITA; Daichi KAMIKAWA; Toshiro DOI
    International Chemical-Mechanical Planarization for ULSI Multilevel Interconnection Conference 283 - 290 2007/03
  • 藤田 隆; 土肥俊郎; 上川大地
    埼玉大学地域共同研究センター紀要 埼玉大学総合研究機構地域共同研究センター産学連携推進部門 (6) 24 - 31 1347-4758 2005/05 
    The novel conditioner was developed for uniform conditioning across a pad. The conditioner is composed by bendable fibers. Therefore, each abrasive conforms independently to the pad surface, differently from the traditional conditioner of plate type. The removal rate using the developed conditioner is equal to that using the traditional conditioner. However, the cut rate of pad using the developed one is tenth part of the cut rate using traditional one. Therefore, it was demonstrated that the developed conditioner realized more efficient conditioning. In addition, in order to evaluate the conditioning non-uniformity effectively, novel uniformity evaluation method was developed. The principle uses color variation by abrading the pad dyed on the surface. As the result, the conditioning non-uniformity was 8.3% with the developed conditioner, compared with 23.8% with the traditional conditioner.
  • Break-in Pad Surface Analysis with FT-IR and Raman Scattering spectroscopy
    Takashi FUJITA; Minako ISHIKURA; Naoko KAWAI; Osamu KINOSHITA; Yoshitaka MORIOKA
    International Chemical-Mechaical Planarization for ULSI Multilevel Interconnection Conference 452 - 459 2005/02
  • 藤田 隆; 土肥俊郎; 上川大地
    埼玉大学地域共同研究センター紀要 埼玉大学地域共同研究センター (5) 19 - 26 1347-4758 2004/05 
    The various pad surface treatments were evaluated to clarify dominant factors on a pad surface to get removal rate on CMP(Chemical Mechanical Polishing). On evaluating the dominant surface' factors, pad surface recovery without grinding removal of pad surface was tried using a no-conditioning pad. After eliminating the by-products involved in the pad surface, recovery ratio on removal rate became 31% at most, which indicated that the by-products clogging in the pad surface was not a dominant factor to inhibit removal rate. Not grinding the surface but scraping the surface was valid for effective surface recovery to get removal rate. In this study, a noble pad conditioner was proposed from their results. The developed conditioner, which is the scraping brush conditioner, makes use of deflective deformation in order to apply constant contact force against height variation of pad surface. Consequently, it was demonstrated that the developed conditioner was applicable on surface reference conditioning on CMP without the stick-slip motion that occurs on the traditional conditioner.
  • Development of long-life pad dresser
    Takashi FUJITA; Junji WATANABE
    Journal of Abrasive machining technology 48 (3) 24 - 29 2004/03 [Refereed]
  • Takashi FUJITA; Junji WATANABE; Akihiko SAGUCHI
    Journal of Precision Engineering The Japan Society for Precision Engineering 69 (11) 1610 - 1614 0912-0289 2003/11 [Refereed]
     
    Pad conditioning is one of significant subjects to keep constant polishing rate and polishing uniformity for CMP(Chemical Mechanical Polishing). To achieve constant pad conditioning, the following three factors are indispensable: (1) Formation of stable contact condition between pad and conditioner, (2) Real time pad condition, (3) Conditioning uniformity within the whole area of the pad. In order to meet their factors, pad conditioner with abrasives on retainer surface, which was termed 'conditioning retainer', has been developed to realize stable polishing performance for CMP. The conditioning retainer carrying out simultaneously both pad conditioning and wafer polishing has a great deal of stiffness enough to keep horizontal contact to the pad against continuous friction resistance during pad conditioning. In addition, surface of the double layer pad conforms to surface of the conditioning retainer, so that contact configuration between conditioning retainer and pad has been kept to be constant. For uniform pad conditioning, the shoulder slope shape was formed on the assist pad to compensate the excessive wearing on the pad edge. The shape relieving polishing pressure at the pad edge corresponds to retainer trajectory density on the pad. The measure resulted in uniform pad wearing and the continuous uniform polishing profile.
  • 藤田 隆; 土肥俊郎
    埼玉大学地域共同研究センター紀要 埼玉大学地域共同研究センター (4) 22 - 28 1347-4758 2003/05 
    Fundamental investigation for pad conditioning was studied on CMP (Chemical Mechanical Polishing). In particular, pad surface roughness was focused on various pad surface conditions. Pad conditioning under wet condition makes pad surface roughness finer than pad conditioning under dry condition. The pad surface with fine roughness contributes to rapid pad break-in and removal rate stabilization. In this study, various factors of pad conditioning were verified to clarify the difference of pad conditioning between under wet condition and dry condition. One of major differences of pad conditioning under dry condition against wet condition was the magnitude of friction force between pad and conditioner, which generates stick-slip motion of pad conditioner on a pad. The other was removal efficiency of pad fragment to be scraped away on conditioning pad. Pad fragments disturbs a stable contact between pad and conditioner. Consequently, it will be possible to realize pad pre-conditioning without pasting pad on a platen by taking appropriate measures against the two.
  • Junji WATANABE; Takashi FUJITA; Toyoshiroh INAMURA; Toshiyasu BEPPU
    Journal of Precision Engineering The Japan Society for Precision Engineering 69 (2) 263 - 267 0912-0289 2003/02 [Refereed]
     
    Anovel polishing pad system and machine were designed and developed to perform a uniform removal rate for a whole wafer surface in CMP (Chemical Mechanical Polishing) planarization process. The pad materials which are composed of hard and soft two layers, and the dimensions were designed based on the calculation of polishing pressure distribution by FEM. The CMP machine developed has good and original features of the followings: Five wafers which axe checked on high precision and rigid stages are simultaneously polished rotating with planetary motion The wafers surface to be polished are set with up and the pad surface is determined by the five wafers envelope. The hand pad which practices the wafer surface polishing do not attached on platen, but are stretched from the periphery of the platen. Using this CMP system, the polishing pressure distribution was measured and calculated for whole wafer area in static state. Then the wafers on which have oxide film were actually polished and the removal rate distribution of die wafers were measured The actual surface profile corresponds well to the measured and calculated pressure profile. It is found that the removal rate distribution of a wafer is controllable from the center-fast to center-slow by using the base-plate which has different radius under the pad system.
  • Study of Electro-CMP for Copper Damascene Process
    Takashi FUJITA; Toshiro DOI; Akira ISOBE; Osamu KINOSHITA
    International IEEE VLSI Multilevel Interconnection Conference 2002/09
  • 藤田 隆; 土肥俊郎; 小林 拓
    Report of Cooperative Research Center, Saitama University 埼玉大学地域共同研究センター (3) 7 - 13 1347-4758 2002/05 
    Electro-CMP(Electro-Chemical Mechanical Polishing) was studied to reduce surface damage on copper and low-K dielectric for copper damascene process. It is indispensable to understand both copper surface oxidation and copper removal mechanism for accurate removal rate control. This study deals with the observation results of the polished copper surface by XPS (X-ray Photoelectron Spectroscopy) and AES(Auger Electron Spectroscopy). In particular, copper samples are measured immediately after polishing to estimate surface oxidation precisely. In addition, the depth profile of oxygen penetration into copper surface was evaluated to measure copper oxide layer thickness. As a result, the surface dipped in slurry for 30 min was oxidized 20A in depth. The formation of CuO on copper surface in Electro-CMP was less than that of conventional CMP. The oxygen penetration in Electro-CMP was loA in depth, less than 15A in conventional CMP.
  • Cuデュアルダマシンプロセスにおける電解複合CMPの基礎的研究
    藤田 隆; 土肥俊郎; 木下 修
    埼玉大学地域共同研究センター紀要 (2) 97 - 103 2001/05
  • Mikhail M. Touzov; Takashi Fujita; Toshiroh Karaki Doy
    IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings 337 - 340 1523-553X 2001 [Refereed]
     
    This study presents a new approach to edge profile control during air back carrier Chemical Mechanical Polishing (CMP). Control of wafer edge profile proves to be difficult as different factors are reported to influence polishing characteristics. To evaluate a CMP on the wafer's edge it needs to look at polish characteristics of leading and trailing edges separately. To understand polish performance on both leading and trailing edges, and their impact on resulting wafer's edge profile a non-rotating carrier experiment had been conducted [4]. Based on the results of the non-rotating carrier experiment a novel retaining ring design has been proposed. In the course of this study CMP of the wafer's edge evaluation for a novel retaining ring has been performed on blanket PETEOS 200mm wafers for different retaining pressures. Edge profile evaluation provided a proof for the Pad Wave Hypothesis and helped to significantly enhance the CMP performance by increasing process stability and achieving wider process window for retaining ring pressure.
  • Takashi Fujita; Mikhail Touzov; Satomi Michiya; Toshiro Karaki Doy
    IEEE International Symposium on Semiconductor Manufacturing Conference, Proceedings 183 - 186 1523-553X 2001 [Refereed]
     
    Air Float Carrier is developed to achieve uniform polishing with continuous air supply during polishing wafer. The carrier has a thin support film inside retainer ring. Retainer pressure enables the support film to push the wafer edge down to the pad locally to control edge-polishing profile. Using this air float carrier, we try to evaluate relationship between pressure profile measured under static condition and actual edge-polishing profile at various retainer extensions and various retainer pressures. As a result of this comparison, it has become evident that the calculated pressure profile corresponds to the actual edge-polishing profile virtually and retainer pressure has a great influence on the actual edge-polishing profile.
  • 藤田 隆; 相川勝芳; 土肥俊郎
    Report of Cooperative Research Center, Saitama University 埼玉大学地域共同研究センター (1) 3 - 7 1347-4758 2000/05 
    次世代CMP(Chemical Mechanical Polishing)装置に対応する研磨方式として、線接触ポリッシング装置の開発を進めている。線接触ポリッシング方法では、連続的な線接触状態の重ね合わせにより研磨が進行し、ウェハに対するドラムの揺動条件を設定することで研磨形状を制御することが可能になる。通常の面接触研磨装置と比べ、研磨部へのスラリー搬送性やウェハーパッド接触状態制御の点で、研磨各部位における研磨状態を精度良く設定することが可能となり、極めて均一な研磨加工が実現できるものと期待されている。本研究では、この線接触ポリッシング方式に対し、厳密な揺動評価の前段階としてウェハに対する各ドラム定在位置における研磨形状に関し、理論形状と実際の研磨形状との比較を行った。その結果、ドラムのウェハに対する接触状態を考慮して得た理論形状は実際に得られた研磨形状とほぼ一致し、均一な線接触状態の下で適正な揺動条件を選択することで、均一研磨実現への可能性を見い出した。
  • 超精密加工技術の応用に関する研究
    藤田 隆; 道谷里美; ミハイルツーゾフ; 土肥俊郎
    埼玉大学地域共同研究センター共同研究成果報告書 (6) 5 - 9 1999/05
  • Takashi FUJITA; Yoshiyasu MAEBA; Naoyuki KURATOMI
    住友金属 住友金属工業 49 (3) 14 - 22 0371-411X 1997/07 [Refereed]
  • Development of CMP(Chemical Mechanical Polishing) Technology
    Takashi FUJITA; Naoyuki KURATOMI; Yoshiyasu MAEBA
    The Sumitomo Search (59) 82 - 90 1997/06
  • Development of CMP(Chemical Mechanical Polishing) Machine
    Toshiyasu BEPPU; Yasuo MINAMIGAWA; Takashi FUJITA; Syunichi SHIBUKI
    技術誌住友金属 46 (3) 43 - 48 1994/03

MISC

  • Laboratory Introduction Kindai University Advanced Processing Systems Engineering Laboratory
    Takashi Fujita  砥粒加工学会誌  68-  (8)  450  -450  2024/08  [Invited]
  • "Visualization" of Polishing Pad Surface Properties by Flexible Fiber Conditioner and Its Mechanism Consideration
    Michio Uneda; Takashi Fujita; Yutaro Arai  Journal of the Japan Society for Abrasive Technology  67-  (2)  71  -74  2023/02  [Refereed][Invited]
  • 革新的な微細精密加工技術の開発を目指して
    藤田 隆  精密工学会誌  88-  (887)  566  -567  2022/07
  • Development of flexible fiber conditioner stabilizing CMP
    Takashi FUJITA  月間トライボロジー  (411)  41  -45  2021/11  [Invited]
  • CMP technology and equipment/materials for Interlayer insulation film
    Takashi FUJITA  2009 Semiconductor Technology Outlook  4-  (3)  2  -5  2009  [Invited]
  • 藤田 隆  砥粒加工学会誌 = Journal of the Japan Society of Grinding Engineers  49-  (8)  439  -440  2005/08
  • 犬童 靖浩; 藤田 隆; 別府 敏保  電子材料  36-  (5)  54  -56  1997/05

Books and other publications

  • Ultra-precise and microfabrication process technology for silicon and compound semiconductors - Fundamentals and latest trends in process-specific machining technology -
    (ContributorChapter 27)CMC Publishing 2024/06 9784781317571
  • Latest trends in advanced semiconductor manufacturing processes and miniaturization technology
    (ContributorChapter 7 Section 4)Technical Information Association Co., Ltd. 2023/09 9784861049828
  • Development trends in CMP technology that supports semiconductor device manufacturing
    (ContributorChapter 3 Section 2)Science & Technology Co., Ltd. 2023/08 9784864283083
  • 最新 CMP技術と周辺部材
    湯之上 隆 (Contributor第6章 第1節)技術情報協会 2008/02

Lectures, oral presentations, etc.

  • Fine mirror finishing technology using sintered diamond grinding tools  [Not invited]
    Takashi Fujita
    Abrasive Processing Society Kansai Region Subcommittee 1st Research Meeting in 2024  2024/03
  • CMP process technology and the latest processing technology for next-generation substrates (SiC, hard glass)  [Not invited]
    Takashi Fujita
    Information organization seminar  2024/03
  • Quantitative evaluation of contact area on surface condition of polishing pad for semiconductor CMP  [Not invited]
    Kaito Yonemoto; Takashi Fujita; Takuro Ito; Hirokuni Hiyama; Yutaka Wada; Hozumi Yasuda; Ryota Koshino
    Japan Society of Mechanical Engineers Kansai Branch 99th Ordinary General Meeting Lecture  2024/03
  • Research on cutting-edge condition evaluation of poly-crystalline diamond (PCD) tool in microgroove machining of ultrasonic piezoelectric crystals  [Not invited]
    Ryota Fukunaga; Takashi Fujita; Haruto Konishi; Yasuo Izumi; Junji Watanabe
    Japan Society of Mechanical Engineers Kansai Branch 99th Ordinary General Meeting Lecture  2024/03
  • Surface treatment technology of CMP pad by fiber conditioner  [Not invited]
    Haruki Hashimoto; Takashi Fujita
    Japan Society of Mechanical Engineers Kansai Student Association 2023 Student Graduation Research Presentation Lecture 17PM1-3  2024/03
  • Research on SiC wafer processing technology using a PCD blade  [Not invited]
    Yuki Izutani; Takashi Fujita
    Japan Society of Mechanical Engineers Kansai Student Association 2023 Student Graduation Research Presentation Lecture 05PM1-5  2024/03
  • Basic research on the formation of micro piezoelectric probes for ultrasound diagnostic device using PCD blades  [Not invited]
    Ryota Fukunaga; Takashi Fujita; Haruto Konishi; Yasuo Izumi; Junji Watanabe
    Proceedings of the Japan Society for Precision Engineering Hiroshima Regional Conference (2023) 53-54  2023/12
  • Research on micromachining technology using PCD blade tools (2nd report)  [Not invited]
    Haruhiro Konishi; Takashi Fujita; Ryota Fukunaga; Yasuo Izumi; Junji Watanabe
    Japan Society for Precision Engineering Autumn Conference Academic Lecture Proceedings (2023) 221-222  2023/09
  • Study of the effect on removal rate from the chemical evaluation of polishing pad surface conditions in oxide CMP  [Not invited]
    Takuro Ito; Takashi Fujita; Kaito Yonemoto; Hirokuni Hiyama; Yutaka Wada; Hozumi Yasuda; Ryota Koshino
    Japan Society for Precision Engineering Fall Conference Student Research Presentation (2023) 48.-49.  2023/09
  • Research on pad surface reference conditioning technology in CMP process  [Not invited]
    Takuro Ito; Takashi Fujita; Kaita Okamoto
    Japan Society of Mechanical Engineers 2023 Annual Conference No.23-1, J132p-08  2023/09
  • Elucidation of the polishing mechanism based on the surface condition of semiconductor CMP polishing pads  [Not invited]
    Kaito Yonemoto; Takashi Fujita; Takuro Ito; Hirokuni Hiyama; Yutaka Wada; Hozumi Yasuda; Ryota Koshino
    Japan Society of Mechanical Engineers 2023 Annual Conference  2023/09
  • Development of pad conditioning technology for semiconductor CMP equipment  [Not invited]
    Kaita Okamoto; Takashi Fujita
    Proceedings of the 2023 Kansai Regional Academic Conference of the Japan Society for Precision Engineering  2023/06
  • Prospects of Elemental Technologies and Pad Conditioning Technologies for High Precision and Stabilization of CMP Process  [Invited]
    Takashi Fujita
    CMP process design and high-precision, stabilization technology, Technical Information Institute  2023/06
  • Study of morphological and chemical quantification of polishing pad surface condition in oxide-CMP  [Not invited]
    Takuro Ito; Takashi Fujita; Kaito Yonemoto; Hirokuni Hiyama; Yutaka Wada; Hozumi Yasuda; Naoyuki Handa
    Proceedings of the 2023 JSPE Spring Conference, pp.781-782, G91  2023/03
  • Study of fine groove machining using poly-crystalline diamond (PCD) blade tool  [Not invited]
    Haruka Konishi; Takashi Fujita; Ryota Fukunaga; Yasuo Izumi; Junji Watanabe
    2023年度精密工学会春季大会学術講演会講演論文集, pp.248-249, C09  2023/03
  • Features of the CMP process and elemental technologies for consumable materials  [Not invited]
    Takashi Fujita
    Technical Information Association Seminar  2022/08
  • Fundamentals and latest trends of CMP processes/processing and slurries/pads for next-generation substrates and next-generation devices  [Not invited]
    Takashi Fujita
    AndTech社セミナー  2022/07
  • Semiconductor CMP process technology and CMP elemental technology for next-generation devices  [Not invited]
    Takashi Fujita
    R&D Support Center Seminar  2022/06
  • CMP process technology and the latest processing technology for next-generation substrates (SiC, hard glass)  [Not invited]
    Takashi Fujita
    情報機構 セミナー  2022/03
  • Development of Pad Surface Reference Conditioning Technology Using Fiber Conditioner  [Not invited]
    Kaita Okamoto; Takashi Fujita
    The Japan Society of Mechanical Engineers Kansai Student Association 2021 Student Member Graduation Research Presentation Lecture  2022/03
  • Study of the morphological and chemical characteristic of CMP pad  [Not invited]
    Takuro Ito; Takashi Fujita
    The Japan Society of Mechanical Engineers Kansai Student Association 2021 Graduation Research Presentation Lecture  2022/03
  • Study on micro-channel fabrication Technique to resin material by PCD blade tool  [Not invited]
    Haruto Konishi; Takashi Fujita
    日本機械学会関西学生会2021年度卒業研究発表講演会  2022/03
  • CMPプロセスにおける装置・消耗材料・終点検出技術
    藤田 隆
    サイエンス&テクノロジー社セミナー  2021/11
  • Development of PCD dicing blade for SiC semiconductor substrate  [Not invited]
    Yasuo IZUMI; Takashi FUJITA
    Technical research commitee for super abrasive wheel  2021/10
  • Development of endpoint detection using optical transmittance and magnetic permeability based on skin effect in chemical mechanical planarization  [Invited]
    Takashi Fujita
    沼田記念論文賞受賞記念講演会  2021/08
  • Thorough explanation of CMP-Latest trends and technological development including equipment, materials, and process technology-
    Takashi Fujita
    R&D支援センター  2021/06
  • Evaluation of effectiveness of pad dressing by fiber dresser and its mechanism-High-speed in-situ observation of fiber behavior-  [Not invited]
    Michio UNEDA; Naoki TAKAHASHI; Yutaro ARAI; Takashi FUJITA
    精密工学会春季大会学術講演会講演論文集(2015)  2015/03
  • Effectiveness evaluation of pad dressing by fiber dresser and its mechanism-life evaluation test of fiber dresser and diamond dresser  [Not invited]
    Michio UNEDA; Naoki TAKAHASHI; Yutaro ARAI; Takashi FUJITA
    精密工学会秋季大会学術講演会講演論文集(2014)  2014/09
  • Evaluation of effectiveness of pad dressing with fiber dresser  [Not invited]
    Michio UNEDA; Naoki TAKAHASHI; Yutaro ARAI; Takashi FUJITA
    精密工学会春季大会学術講演会講演論文集(2014)  2014/03
  • Development of ultra-precision dicing technology using PCD blade (3rd report)  [Not invited]
    Takashi FUJITA; Mikiya SHIMADA; Yasuo IZUMI; Junji WATANABE
    精密工学会春季大会学術講演会講演論文集(2014)  2014/03
  • Development technique of SiC substrate dicing process with PCD blade  [Not invited]
    Takashi FUJITA; Yasuo IZUMI; Mikiya SHIMADA; Takeru TSUTSUI; Junji WATANABE
    SiC及び関連半導体研究第22回講演会  2014/02
  • New dicing processing technology with PCD blade  [Invited]
    Takashi FUJITA
    2013年度第2回ニューダイヤモンドフォーラム研究会  2013/11
  • PCD blade dicing technology  [Not invited]
    Takashi FUJITA
    精密工学会秋季大会ランチョンセミナー  2013/09
  • Evaluation of dressing stability by fiber dresser  [Not invited]
    Yutaro ARAI; Naoki TAKAHASHI; Takashi FUJITA; Michio UNEDA
    精密工学会秋季大会学術講演会講演論文集(2013)  2013/09
  • (Keynote Speech) Verification of surface standard polishing technology in CMP process  [Invited]
    Takashi FUJITA
    精密工学会秋季大会学術講演会講演論文集(2013)  2013/09
  • Development of Ultra-Precision Dicing Technology with PCD Blade (2nd Report) -Examination of Ductile Mode Machining with High Periphery Micro Cutting Edge for High Rigidity and High Efficiency-  [Not invited]
    Takashi FUJITA; Mikiya SHIMADA; Yasuo IZUMI; Takeru TSUTSUI; Junji WATANABE
    精密工学会秋季大会学術講演会講演論文集(2013)  2013/09
  • PCD blade dicing technology  [Not invited]
    Takashi FUJITA
    砥粒加工学会我が社の新技術発表会  2013/08
  • Evaluation of effectiveness of pad dressing with fiber dresser  [Not invited]
    Yutaro ARAI; Naoki TAKAHASHI; Takashi FUJITA; Michio UNEDA
    砥粒加工学会講演会講演論文集  2013/08
  • Ultra-fine Grooving Technology of Cemented Carbide with PCD Blade - Ductile-Mode Grooving with Continuous Cutting Edge of Sintered Diamond-  [Not invited]
    Takashi FUJITA; Yasuo IZUMI; Mikiya SHIMADA; Takeru TSUTSUI; Junji WATANABE
    砥粒加工学会講演会講演論文集  2013/08
  • Development of ultra-precision dicing technology using PCD blade (1st report)  [Not invited]
    Takashi FUJITA; Yasuo IZUMI; Junji WATANABE
    精密工学会春季大会学術講演会講演論文集(2013)  2013/03
  • PCD (sintered diamond) dicing blade  [Not invited]
    和泉康夫; 藤田 隆
    日本機械学会 第9回生産加工・工作機械部門講演会 展示社セミナー  2012/12
  • Ultra-precision dicing technology using PCD (polycrystalline diamond)  [Invited]
    Takashi FUJITA
    関西大学連続セミナー「ものづくり基盤技術」in MOBIO「最新の加工技術と加工工具」  2012/10
  • Sensing Technology in Machining Process-Application to CMP System-  [Invited]
    Takashi FUJITA
    精密加工プロセス研究会  2012/09
  • Polishing characteristics of 2 inch single crystal SiC wafer by ultraviolet light assisted processing  [Not invited]
    坂本武司; 沢見有輝; 久保田章亀; 峠 睦; 渡邉純二; 藤田 隆; 金澤雅喜; 五十嵐健二
    精密工学会大会学術講演会講演論文集 (2012)  2012/03
  • Measuring technology during processing and processing mechanism  [Invited]
    Takashi FUJITA
    日本学術振興会第145委員会 第125回研究会(2011)  2011/02
  • Tokyo Seimitsu CMP technology and equipment  [Not invited]
    Takashi FUJITA
    第663回電子ジャーナルテクニカルセミナー ~32/22nm時代のCMP技術徹底解説~  2011/01
  • Recent CMP equipment technology and measurement technology during machining.  [Invited]
    Takashi FUJITA
    日本学術振興会第136委員会第7回合同研究会  2010/07
  • Tokyo Seimitsu CMP technology and equipment  [Not invited]
    Takashi FUJITA
    第446回電子ジャーナルテクニカルセミナー ~32/22nm時代のCMP技術徹底解説~  2010/01
  • Pretreatment technology of pad surface by flexible fiber dresser  [Not invited]
    Takashi FUJITA
    プラナリゼーションCMP専門委員会講演  2009/10
  • CMP endpoint detection technology by eddy current using skin effect  [Not invited]
    Takashi FUJITA; Keita KITADE; Toshiyuki YOKOYAMA
    精密工学会秋季大会学術講演会講演論文集(2009)  2009/09
  • Study on Electropolishing Technology for Cu and Ta Films (3rd Report) Examination of Processing Phenomena by Current Propagating on Dielectric Surface  [Not invited]
    Mutsumi TOUGE; Junji WATANABE; Takashi FUJITA; Sadamu OTA
    精密工学会春季大会学術講演会講演論文集(2009)  2009/03
  • Study of pad dressing in CMP (6th report)  [Not invited]
    Takashi FUJITA; Akihiko KURIHARA; Toshiro DOI
    精密工学会春季大会学術講演会講演論文集(2009)  2009/03
  • Tokyo Seimitsu CMP technology and equipment-Developing dressing elements as process technology-  [Not invited]
    Takashi FUJITA
    第290回電子ジャーナルテクニカルセミナー ~45/32nm時代のCMP技術徹底解説~  2009/01
  • Study on electropolishing technology for Cu and Ta films  [Not invited]
    Junji WATANABE; Takashi FUJITA; Mutsumi TOUGE; Yusuke FURUTA
    精密工学会春季大会学術講演会講演論文集(2008)  2008/03
  • Development of slurry supply technology using capillary effect  [Not invited]
    Takashi FUJITA; Shuhei OSHIDA; Junji WATANABE
    精密工学会春季大会学術講演会講演論文集(2008)  2008/03
  • Study of pad dressing in CMP (5th report)  [Not invited]
    Takashi FUJITA; Akihiko KURIHARA; Toshiro DOI
    精密工学会春季大会学術講演会講演論文集(2008)  2008/03
  • Tokyo Seimitsu CMP technology and equipment-Development of elemental technology focusing on next-generation equipment-  [Not invited]
    Takashi FUJITA
    第154回電子ジャーナルテクニカルセミナー  2008/01
  • Study on electropolishing technology for Cu and Ta films  [Not invited]
    Junji WATANABE; Takashi FUJITA; Mutsumi TOUGE; Yoshinori ETO
    精密工学会春季大会学術講演会講演論文集(2007)  2007/03
  • Study of Pad Dressing in CMP (4th Report) -Evaluation of Polishing Rate Stability with Flexible Dresser-  [Not invited]
    Takashi FUJITA; Daichi KAMIKAWA; Toshiro DOI
    精密工学会春季大会学術講演会講演論文集(2007)  2007/03
  • Uniform surface roughening and dressing effect of CMP pad by new flexible dresser  [Not invited]
    Daichi KAMIKAWA; Takashi FUJITA; Toshiro DOI; Makoto OGAWA; Akihiko SEIKI; Akihiko KURIHARA
    精密工学会東北地方大会学術講演会講演論文集(2006)  2006/12
  • Study of pad dressing in CMP (3rd report)-Examination of pad surface roughening and break-in shortening by dressing-  [Not invited]
    Daichi KAMIKAWA; Takashi FUJITA; Toshiro DOI; Akihiko KURIHARA
    精密工学会秋季大会学術講演会講演論文集(2006)  2006/09
  • CMP technology for porous low-k film  [Not invited]
    Takashi FUJITA
    半導体産業新聞社主催セミナー ~ULK膜導入へ起死回生の動き~  2006/06
  • Study of pad dressing in CMP -Evaluation of pad dressing uniformity by color difference-  [Not invited]
    Daichi KAMIKAWA; Takashi FUJITA; Toshiro DOI
    精密工学会春季大会学術講演会講演論文集(2006)  2006/03
  • Fundamental study on pad dressing in CMP  [Not invited]
    Daichi KAMIKAWA; Takashi FUJITA; Toshiro DOI; Yuki TAKAHASHI; Kenjiro OGATA; Akihiko SEIKI
    精密工学会東北地方大会学術講演会講演論文集(2005)  2005/12
  • Fundamental study on pad dressing in CMP  [Not invited]
    Daichi KAMIKAWA; Takashi FUJITA; Toshiro DOI; Makoto OGAWA
    精密工学会秋季大会学術講演会講演論文集(2005)  2005/09
  • Study of polishing mechanism by pad surface analysis (6th report)  [Not invited]
    Takashi FUJITA; Minako ISHIKURA; Naoko KAWAI; Yoshitaka MORIOKA
    精密工学会秋季大会学術講演会講演論文集(2005)  2005/09
  • Basic Study on Pad Conditioning in Planarization CMP  [Not invited]
    Daichi KAMIKAWA; Toshiro DOI; Takashi FUJITA; Makoto OGAWA
    精密工学会学生発表講演会講演論文集(2005)  2005/09
  • Pad surface condition analysis and dressing technology  [Not invited]
    Takashi FUJITA
    プラナリゼーションCMP専門委員会講演  2005/05
  • Study of polishing mechanism by pad surface analysis (5th report)
    Minako ISHIKURA; Takashi FUJITA; Naoko KAWAI; Yoshitaka MORIOKA; Kazutaka MIYAMOTO; Osamu KINOSHITA
    精密工学会春季大会学術講演会講演論文集(2005)  2005/03
  • Study of polishing mechanism by pad surface analysis (4th report)
    藤田 隆; 石倉美奈子; 河井奈緒子; 木下 修; 森岡善隆
    精密工学会春季大会学術講演会講演論文集(2005)  2005/03
  • Basic Study on Pad Conditioning in Planarization CMP  [Not invited]
    Daichi KAIKAWA; Takashi FUJITA; Toshiro DOI; Akihiko SEIKI; Kenjiro OGATA
    精密工学会東北地方大会学術講演会講演論文集(2004)  2004/12
  • Study of polishing mechanism by pad surface analysis (3rd report)  [Not invited]
    Takashi FUJITA; Minako ISHIKURA; Naoko KAWAI; Osamu KINOSHITA; Yoshitaka MORIOKA
    精密工学会秋季大会学術講演会講演論文集(2004)  2004/09
  • Study on controllability improvement of edge profile in planarization CMP  [Not invited]
    Daishi FUKUI; Takashi FUJITA; Toshiro DOI; Makoto OGAWA; Housen TAI; Arihiro KANAZAWA
    精密工学会東北地方大会学術講演会講演論文集(2003)  2003/12
  • Basic study on pad dressing in planarization CMP  [Not invited]
    Yosuke HIRAGA; Takashi FUJITA; Toshiro DOI; Makoto OGAWA; Shigeru WATANABE; Akihiko SEIKI
    精密工学会東北地方大会学術講演会講演論文集(2003)  2003/12
  • Study of polishing mechanism by pad surface analysis (2nd report)  [Not invited]
    Takashi FUJITA; Osamu KINOSHITA; Akira ISOBE
    精密工学会秋季大会学術講演会講演論文集(2003)  2003/09
  • Examination of polishing mechanism by pad surface analysis  [Not invited]
    Takashi FUJITA
    日本学術会議将来加工技術第136委員会  2003/05
  • Examination of polishing mechanism by pad surface analysis  [Not invited]
    Takashi FUJITA
    CMP技術の基礎と実例講座シリーズ第20回CMPプロセス用パッドの現状とメカニズム  2003/01
  • Electrolytic composite CMP method and application to copper process  [Not invited]
    Hiromu KOBAYASHI; Toshiro DOI; Takashi FUJITA; Makoto OGAWA; Keizaburo HATAKEYAMA; Takashi SEYAMA; Shigeru WATANABE
    精密工学会東北地方大会学術講演会講演論文集(2002)  2002/12
  • Proposal of line contact type advanced CMP machine  [Not invited]
    Keizaburo HATAKEYAMA; Toshiro DOI; Takashi FUJITA; Makoto OGAWA; Hiromu KOBAYASHI; Hiroaki KATAYANAGI; Shigeru WATANABE
    精密工学会東北地方大会学術講演会講演論文集(2002)  2002/12
  • Study of polishing mechanism by pad surface analysis  [Not invited]
    Takashi FUJITA; Osamu KINOSHITA; Akira ISOBE
    精密工学会秋季大会学術講演会講演論文集(2002)  2002/09
  • Basic research on electrolytic composite CMP  [Not invited]
    Yuki YASUDA; Toshiro DOI; Makoto OGAWA; Takashi FUJITA; Kazuko TANIZAWA; Ken TAKESHIMA
    精密工学会東北地方大会学術講演会講演論文集(2001)  2001/12
  • Fundamental study on CMP of compound semiconductors  [Not invited]
    Hirotaka HOSOZAWA; Toshiro DOI; Makoto OGAWA; Takashi FUJITA; Yuki SASAGAWA
    精密工学会東北地方大会学術講演会講演論文集(2001)  2001/12
  • Study on drum-type line contact polishing machine  [Not invited]
    Ken TAKESHIMA; Toshiro DOI; Takashi FUJITA; Makoto OGAWA; Masaki KINOSHITA; Fuminobu MAKII
    精密工学会東北地方大会学術講演会講演論文集(2001)  2001/12
  • Fundamental study on copper electro-CMP  [Not invited]
    Yuji AKAO; Toshiro DOI; Takashi FUJITA
    精密工学会東北地方大会学術講演会講演論文集(2000)  2000/12
  • Novel line contact polishing machine and the experiment for the characteritics  [Not invited]
    Masayoshi AIKAWA; Toshiro DOI; Takashi FUJITA
    精密工学会東北地方大会学術講演会講演論文集(2000)  2000/12
  • Insight of polishing characteristic of CMP  [Not invited]
    Mikhail TOUZOV; Satomi MICHIYA; Takashi FUJITA; Takao INABA; Hirohiko IZUMI; Toshiro DOI
    精密工学会秋季大会学術講演会講演論文集(2000)  2000/09
  • Analysis of pressure distribution on a wafer for CMP machine  [Not invited]
    Masahiro OGAWA; Wataru TAKAHASHI; Shunichi SHIBUKI; Takashi FUJITA
    精密工学会春季大会学術講演会講演論文集(1999)  1999/03
  • In-situ dressing technology for interlayer oxide CMP  [Not invited]
    Takashi FUJITA; Yasuo MINAMIGAWA; Toshiyasu BEPPU; Toshiji TAKIGAWA; Junji WATANABE
    精密工学会春季大会学術講演会講演論文集(1997)  1997/03
  • Ultra-precision plane polishing on Φ8 inch Si wafer( 2nd report)  [Not invited]
    Takashi FUJITA; Toshiyasu BEPPU; Junji WATANABE
    精密工学会秋季大会学術講演会講演論文集(1993)  1993/09
  • Ultra-precision plane polishing on Φ8 inch Si wafer  [Not invited]
    Takashi FUJITA; Toshiyasu BEPPU; Futoshi KATSUKI; Kenji MASUDA
    精密工学会秋季大会学術講演会講演論文集  1992/09

Courses

  • Technology and ethicsTechnology and ethics Kindai University
  • Mechanics Interdisciplinary Lecture ⅣDesign/Production/Processing FieldMechanics Interdisciplinary Lecture ⅣDesign/Production/Processing Field Kindai University Graduate School of Interdisciplinary Science and Engineering, Department of Mechanics Engineering
  • Special lecture on advanced machining system engineeringSpecial lecture on advanced machining system engineering Kindai University Graduate School of Interdisciplinary Science and Engineering, Department of Mechanics Engineering
  • Graduate SeminarGraduate Seminar Kindai University, Faculty of Science and Engineering, Department of Mechanical Engineering

Affiliated academic society

  • Japan Society of Design Engineering   精密工学会   砥粒加工学会   日本機械学会   

Research Themes

  • Research and development of CMP pad grinding technology using a brush-type grinding plate to strengthen the supply chain for the revival of semiconductors
    Ministry of Economy, Trade and Industry Kinki Bureau of Economy, Trade and Industry:FY2020 R&D support project for growing small and medium-sized enterprises (Go-Tech project)
    Date (from‐to) : 2023/07 -2026/07
  • Development of ultrafine dicing processing technology by short pulse laser dressing for PCD blade
    Public Interest Incorporated Foundation Amada Foundation:General research and development grant
    Date (from‐to) : 2022/12 -2026/03
  • Development of ultra-fine cutting technology for SiC substrates using ultra-thin PCD blades
    公益財団法人大澤科学技術振興財団:一般研究開発助成
    Date (from‐to) : 2022/11 -2024/10
  • Research on control mechanism based on chemical and fluid behavior of slurry on polishing pad surface
    受託研究
    Date (from‐to) : 2020/10 -2023/03
  • ファイバーコンディショナーによるCMPパッドコンディショニング技術の開発
    (財)荏原畠山記念文化財団:一般研究開発助成
    Date (from‐to) : 2021/08 -2022/07

Industrial Property Rights

  • 特開2023-116542:Crack propagation device and crack propagation method  2023/08/22
    Shuhei Oshida, Tasuku Shimizu, Takashi Fujita, Akira Uekihara  Tokyo Seimitsu Co. Ltd.,
  • 特開2023-029630:Crack propagation device and crack propagation method  2023/03/03
    Tasuku Shimizu, Shuhei Oshida, Akira Uekihara, Takashi Fujita  Tokyo Seimitsu Co. Ltd.,
  • 特許7290843:Crack growth device and crack growth method  
    Shuhei Oshida, Tasuku Shimizu, Takashi Fujita, Akira Uekihara  Tokyo Seimitsu Co. Ltd.,
  • 特許7217409:Crack growth device and crack growth method  
    Shuhei Oshida, Tasuku Shimizu, Takashi Fujita, Akira Uekihara  Tokyo Seimitsu Co. Ltd.,
  • 特許7206577:3D coordinate measuring device  
    Yukio Kanno, Keiichiro Gomi, Takashi Fujita  Tokyo Seimitsu Co. Ltd.,
  • 特開2021-043219:3D coordinate measuring device  2021/03/18
    Yukio Kanno, Keiichiro Gomi, Takashi Fujita  Tokyo Seimitsu Co. Ltd.,
  • 特許6979607:Grinding device and grinding method  
    Shuhei Oshida, Tasuku Shimizu, Takashi Fujita, Akira Uekihara  Tokyo Seimitsu Co. Ltd.,
  • 特許6979608:Grinding device and grinding method  
    Tasuku Shimizu, Shuhei Oshida, Akira Uekihara, Takashi Fujita  Tokyo Seimitsu Co. Ltd.,
  • 特開2024-32712:Crack propagation device and crack propagation method  2012/03/06
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA  Tokyo Seimitsu Co. Ltd.,
  • 特開2019-160971:Wafer processing method  
    Ryosuke Kataoka, Takashi Tamogami, Shuhei Oshida, Takashi Fujita
  • 特開2019-160970:Wafer processing method  
    Ryosuke Kataoka, Takashi Tamogami, Shuhei Oshida, Takashi Fujita
  • 特許6735372:Laser dicing machine  
    Takayuki Shimizu, Takashi Fujita
  • 特開2020-074454:Laser processing system and laser processing method for improving chip strength  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2020-080409:Laser processing system and laser processing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許7096972:Three-dimensional coordinate measuring device  
    Tetsuji KAWAKAMI, Nobuhiro OKUBO, Kazuhisa FUSAYASU, Keiichiro GOMI, Takashi FUJITA
  • 特許6653943号:Laser processing equipment for semiconductor wafers to obtain chips with high bending strength  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2020-025142:Wafer processing apparatus and wafer processing method for obtaining chips with high bending strength  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2020-025112:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特開2020-004984:Wafer processing method  
    Ryosuke KATAOKA, Takashi TAMOGAMI, Shuhei OSHIDA, Takashi FUJITA
  • 特開2019-192937:Wafer processing system and wafer processing method  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2019-155589:Dressing device and dressing method  
    Yusuke ARAI, Takashi FUJITA
  • 特開2019-169719:Laser processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6788208:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2019-161232:Laser processing system  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6857831:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2019-096911:Laser processing system  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2019-096910:Laser processing system  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2019-071476:Laser optics  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2019-071475:Laser optics  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6880417:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6562170号:Work dividing device  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6562169号:Work dividing device  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特開2019-059020:Processing grindstone  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特開2019-035777:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2019-056713:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6466620号:Work dividing device  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特開2019-068077:Laser processing apparatus and laser processing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特開2019-087751:Laser processing apparatus and laser processing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特開2019-035764:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2019-015746:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2019-012850:Wafer processing method and wafer processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6703073号:Wafer processing method and wafer processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6703072:Wafer processing method and wafer processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6452016号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6656327:Work processing device  
    Yasuo IZUMI, Hisashi MINAMI, Kouji WATANABE, Daisuke YANAGIDA, Takashi FUJITA, Junji WATANABE
  • 特許6653058:Three-dimensional coordinate measuring device  
    Tetsuji KAWAKAMI, Nobuhiro OKUBO, Kazuhisa FUSAYASU, Keiichiro GOMI, Takashi FUJITA
  • 特開2018-170525:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6593663:Wafer processing method and wafer processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特開2018-133593:Wafer processing method and wafer processing system  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2018-142717:Wafer processing method and wafer processing system  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6454953号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6454952号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特開2018-103356:Blade processing apparatus and blade processing method  
    Yasuo IZUMI, Hisashi MINAMI, Kouji WATANABE, Daisuke YANAGIDA, Takashi FUJITA, Junji WATANABE
  • 特許6434113号:Work processing device and work processing method  
    Yasuo IZUMI, Hisashi MINAMI, Kouji WATANABE, Daisuke YANAGIDA, Takashi FUJITA, Junji WATANABE
  • 特開2018-046291:Manufacturing system and manufacturing method of thin chip having high bending strength  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6508286号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6274349号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6483204号:Laser dicing device and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許6229812号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6390070号:Three-dimensional coordinate measuring device  
    Tetsuji KAWAKAMI, Nobuhiro OKUBO, Kazuhisa FUSAYASU, Keiichiro GOMI, Takashi FUJITA
  • 特開2017-224826:Method and system for forming thin chip with high bending strength  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6324588号:Contour shape surface roughness measuring device and contour shape surface roughness measuring method  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許6384975号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6176415号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6383030号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6249318号:Manufacturing system and manufacturing method of thin chip with high bending strength  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特開2017-092503:Wafer dividing system and wafer dividing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6276437号:Method and system for forming thin chip with high bending strength  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6292428号:Rotation angle measuring device and rotation angle measuring method  
    Toru SHIMIZU, Nobuyuki OSAWA, Takashi FUJITA
  • 特許6197970号:Division start point forming method and division start point forming apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6099290号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6119914号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takshi FUJITA
  • 特開2017-050574:Work dividing device  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6414995号:Work dividing device  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6319640号:Laser dicing device and method  
    Takashi FUJITA, Tasuku SHIMIZU
  • 特許6327490号:Wafer processing apparatus and wafer processing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6412538号:Dicing machine  
    Takashi FUJITA, Junji WATANABE
  • 特許6276357号:Wafer processing method and wafer processing apparatus  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6276356号:Wafer processing equipment  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許6276347号:Wafer processing equipment  
    Tasuku SHIMIZU, Shuhei OSHIDA, Aira UEKIHARA, Takashi FUJITA
  • 特許6044814号:Laser dicing device and method  
    Takashi FUJITA, Tasuku SHIMIZU
  • 特開2016-196085:Processing grindstone  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特許6276332号:Micro crack growth device  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特開2016-201551:Method and apparatus for forming microcracks in semiconductor substrate  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6103739号:Wafer processing method and wafer processing apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6048713号:Laser dicing device and method  
    Takashi FUJITA, Tasuku SHIMIZU
  • 特許6081008号:Wafer processing apparatus and wafer processing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Aira UEKIHARA
  • 特許6060475号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6081006号:Wafer cutting method and wafer cutting device  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6081005号:Grinding/polishing device and grinding/polishing method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6157668号:Method and apparatus for forming microcracks in semiconductor substrate  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許6128666号:Semiconductor substrate cleaving method and cleaving apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許5939416号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特開2017-134025:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6288477号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6315291号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6347260号:Three-dimensional coordinate measuring device  
    Yukio KANNO, Keiichiro GOMI, Takashi FUJITA
  • 特許6039084号:Dicing device and dicing method  
    Takashi FUJITA, Junji WATANABE
  • 特許5976228号:Dicing blade  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特許5756582号:Shape measuring instruments  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特開2016-041468:Dressing device and dressing method  
    Yusuke ARAI, Takashi FUJITA
  • 特許6503282号:Shape measurement/calibration device  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許6175470号:Laser dicing device and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5995023号:Semiconductor substrate cutting method  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許5900811号:Semiconductor substrate cutting method  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許5810244号:Shape measuring instruments  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許5810243号:Shape measuring instruments  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許5845373号:Shape measurement/calibration device  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許6069740号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許6253206号:Blade processing apparatus and blade processing method  
    Yasuo IZUMI, Hisashi MINAMI, Kouji WATANABE, Daisuke YANAGIDA, Takashi FUJITA, Junji WATANABE
  • 特許6282613号:Dicing blade  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特許5888827号:Dicing device and dicing method  
    Takashi FUJITA, Junji WATANABE
  • 特許5877917号:Shape measurement/calibration device  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許5885369号:Dicing blade  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特開2015-092189:Rotation angle measuring device and rotation angle measuring method  
    Toru SHIMIZU, Nobuyuki OSAWA, Takashi FUJITA
  • 特許5748914号:Dicing device and dicing method  
    Takashi FUJITA, Junji WATANABE
  • 特許5688782号:Dicing blade  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特許5693781号:Dicing blade  
    Takashi FUJITA, Yasuo IZUMI, Junji WATANABE
  • 特許5903135号:Polishing end point detecting device and polishing end point detecting method  
    Daichi NAGAI, Takashi FUJITA
  • 特許5980275号:Laser dicing device and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5546703号:Pad dresser and pad dressing method  
    Takashi FUJITA
  • 特許5682802号:Rotation angle measuring device and rotation angle measuring method  
    Toru SHIMIZU, Nobuyuki OSAWA, Takashi FUJITA
  • 特許5301061号:Contour shape surface roughness measuring device and contour shape surface roughness measuring method  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許5807757号:Work recovery device and method  
    Masayuki AZUMA, Yusuke ARAI, Takashi FUJITA
  • 特許5765386号:Laser dicing method and device  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特開2014-032177:Contour shape surface roughness measuring device and contour shape surface roughness measuring method  
    Yasuhiro YAMAUCHI, Takashi FUJITA
  • 特許6103217号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA
  • 特許6168344号:Measuring machine and movement guide mechanism of the measuring machine  
    Tetsuji KAWAKAMI, Nobuhiro OKUBO, Kazuhisa FUSAYASU, Keiichiro GOMI, Takashi FUJITA
  • 特許5528596号:Wafer storage device and wafer storage/immersion method  
    Yoshikazu OZAWA, Satoshi MARUOKA, Takashi FUJITA
  • 特許6090656号:Rotation angle measuring device and rotation angle measuring method  
    Toru SHIMIZU, Nobuyuki OSAWA, Takashi FUJITA
  • 特許5528520号:Polishing device with pressure distribution adjustment function  
    Takashi FUJITA, Akihiko SAITO
  • 特許5885033号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許5983923号:Laser dicing apparatus and method and wafer processing method  
    Takashi FUJITA, Tasuku SHIMIZU
  • 特許6029354号:Wafer suction device and wafer suction method  
    Masaki KANAZAWA, Kazuo YAMAKAWA, Takashi FUJITA
  • 特許5871719号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許5496250号:Pad dressing device and pad dressing method  
    Takashi FUJITA
  • 特許5995497号:Wafer suction device and wafer suction method  
    Masaki KANAZAWA, Takashi FUJITA
  • 特許5598738号:Wafer table and laser dicing equipment  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特開2012-164974:Laser processing apparatus and laser processing method  
    Takayuki SHIMIZU, Takashi FUJITA, Tasuku SHIMIZU
  • 特許5831232号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許5854215号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許5013148号:Work dividing device and work dividing method  
    Tasuku SHIMIZU, Takashi FUJITA, Nobuo KOJIMA
  • 特許5959193号:Wafer grinding method and wafer grinding apparatus  
    Kenji IGARASHI, Masaki KANAZAWA, Takashi FUJITA
  • 特許6025325号:Wafer grinding method and wafer grinding apparatus  
    Kenji IGARASHI, Masaki KANAZAWA, Takashi FUJITA
  • 特許5845555号:Dicing machine  
    Yusuke ARAI, Takashi FUJITA
  • 特許5731959号:Supply device and supply method for cooling liquid for work cutting part  
    Takashi FUJITA, Nobuo KOJIMA
  • 特許5496167号:Method and device for dividing semiconductor wafer  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許4945835号:Laser dicing apparatus and method, cleaving apparatus and method, and wafer processing method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5809011号:Touch probe  
    Shintaro NAITO, Shinichi NAGANO, Takashi FUJITA
  • 特許5723740号:Blade lubrication mechanism of dicing device and blade lubrication method  
    Takashi FUJITA, Nobuo KOJIMA
  • 特許5387924号:Dicing device and dicing method  
    Masayuki AZUMA, Yusuke ARAI, Takashi FUJITA
  • 特許5825511号:Semiconductor substrate cutting method and semiconductor substrate cutting apparatus  
    Tasuku SHIMIZU, Shuhei OSHIDA, Akira UEKIHARA, Takashi FUJITA
  • 特許5803049号:Semiconductor substrate cutting method and semiconductor substrate cutting apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許4915485号:Dicing device and dicing method  
    Masayuki AZUMA, Yusuke ARAI, Takashi FUJITA
  • 特許5829433号:Laser dicing device and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許4761088号:Dicing device and dicing method  
    Masayuki AZUMA, Yusuke ARAI, Takashi FUJITA
  • 特許5780446号:Semiconductor wafer breaking apparatus and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5846470号:Laser dicing apparatus and method and wafer processing method  
    Takayuki SHIMIZU, Takashi FUJITA, Tasuku SHIMIZU
  • 特許5780445号:Semiconductor wafer breaking apparatus and method  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5695427号:Semiconductor wafer cleaving method and cleaving apparatus  
    Takayuki SHIMIZU, Takashi FUJITA
  • 特許5707889号:Semiconductor substrate cutting method and semiconductor substrate cutting apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許5953645号:Semiconductor substrate cutting method and semiconductor substrate cutting apparatus  
    Shuhei OSHIDA, Tasuku SHIMIZU, Takashi FUJITA, Akira UEKIHARA
  • 特許5631160号:Work dicing device and work dicing method  
    Toshiyuki YOKOYAMA, Takashi FUJITA
  • 特許5679171号:Dicing device and dicing method  
    Takayuki KANEKO, Shinji KAMATA, Takashi FUJITA
  • 特許5541716号:Wafer storage device, wafer storage method, and wafer polishing device  
    Satoshi MARUOKA, Takashi FUJITA
  • 特開2012-019114:Polishing end point detecting device and polishing end point detecting method  
    Daichi NAGAI, Takashi FUJITA
  • 特許5495911号:Dicing device, dicing device with drainage/exhaust mechanism, and environmental control method thereof  
    Yusuke ARAI, Takashi FUJITA, Masayuki AZUMA
  • 特許5505790号:Inspection method with dicing equipment  
    Takeo TSUSHIMA, Takashi FUJITA
  • 特許5495832号:Dicing device, dicing device unit, and dicing method  
    Yusuke ARAI, Takashi FUJITA, Masayuki AZUMA
  • 特許5404349号:Dicing device  
    Yusuke ARAI, Takashi FUJITA, Masayuki AZUMA
  • 特許5121756号:Pad dresser, polishing apparatus, and pad dressing method  
    Takashi FUJITA
  • 特許4950981号:Chemical mechanical polishing device and chemical mechanical polishing method  
    Toshiro DOI, Takashi FUJITA
  • 特許5339859号:Detecting method and detecting device at the end of polishing  
    Osamu MATSUSHITA, Akio YANAI, Takashi KOMIYAMA, Toshiyuki YOKOYAMA, Takashi FUJITA
  • 特許5241399号:Polishing endpoint prediction/detection method and apparatus  
    Takashi FUJITA, Keita KITADE, Toshiyuki YOKOYAMA
  • 特許5361300号:Polishing end point prediction and detection method and apparatus  
    Takashi FUJITA, Osamu MATSUSHITA, Akio YANAI
  • 特許5361299号:Polishing end prediction/detection method and device  
    Takashi FUJITA, Akio YANAI, Osamu MATSUSHITA
  • 特許5274161号:Wafer rinsing device, wafer rinsing method, and wafer polishing device  
    Yoshikazu OZAWA, Satoshi MARUOKA, Takashi FUJITA
  • 特許5339791号:Polishing endpoint detecting method and polishing apparatus  
    Osamu MATSUSHITA, Akio YANAI, Takashi KOMIYAMA, Toshiyuki YOKOYAMA, Takashi FUJITA
  • 特許5247243号:Wafer storage device, wafer storage method, and wafer polishing device  
    Yoshikazu OZAWA, Satoshi MARUOKA, Takashi FUJITA
  • 特許5274105号:Polishing endpoint detection method  
    Akio YANAI, Osamu MATSUSHITA, Takashi FUJITA
  • 特許5241321号:Wafer polishing state monitoring method and polishing state monitoring device  
    Osamu MATSUSHITA, Akio YANAI, Takashi FUJITA
  • 特許4862011号:Detecting method in polishing process, polishing apparatus, polishing state monitoring method, and detecting method  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特許4319692号:Prediction/detection method and device for polishing end time and real-time film thickness monitoring method and device  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特許4702641号:Polishing liquid supply device for polishing pad and polishing liquid supply method for polishing pad  
    Takashi FUJITA
  • 特許5377873号:Wafer polishing apparatus and wafer polishing method using the polishing apparatus  
    Akio YANAI, Takashi FUJITA, Takayoshi KUWABARA
  • 特許5377872号:Prediction/detection method and device for polishing endpoint  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特許5377871号:Prediction/detection method and device for polishing end time  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特許5408883号:Wafer polishing apparatus and wafer polishing method  
    Akio YANAI, Takashi FUJITA, Takayoshi KUWABARA
  • 特許5495493号:Film thickness measuring device and film thickness measuring method  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特開2009-105338:Polishing monitor window of CMP apparatus and CMP apparatus including the same  
    Takashi FUJITA, Osamu MATSUSHITA
  • 特許5158680号:Prediction method of polishing endpoint  
    Takashi FUJITA
  • 特許5300234号:Polishing apparatus and polishing method with pressure distribution adjusting function  
    Takashi FUJITA, Akihiko SAITO
  • 特許5224752号:Prediction method of polishing endpoint time and its device  
    Takashi FUJITA
  • 特開2009-060044:CMP装置の研磨モニタ窓  
    Takashi FUJITA, Osamu MATSUSHITA
  • 特許5148206号:Electrolytic processing method and electrolytic processing apparatus  
    Junji WATANABE, Takashi FUJITA
  • 特開2009-049147:Method and device for detecting metal film end point using high frequency  
    Daichi NAGAI, Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特開2009-043854:Wafer drying apparatus and wafer drying method  
    Takashi FUJITA
  • 特許5082066号:Electrolytic processing method and electrolytic processing apparatus  
    Takashi FUJITA, Junji WATANABE
  • 特開2009-028856:Polishing end point detection method and apparatus using torque change  
    Takuji ATARASHI, Takashi FUJITA, Satoru HASEGAWA, Shinji OSADA, Soushi YAMADA
  • 特開2008-294233:Cleaning device  
    Hirohiko TAKAHASHI, Takashi FUJITA
  • 特許4159594号:Prediction/detection method and device for polishing endpoint  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特開2008-272902:Polishing head cleaning apparatus and polishing head cleaning method in MP apparatus  
    Takashi FUJITA, Tomoyuki FUKUDA, Akira Teshirogi
  • 特開2007-117544:Polishing condition management apparatus and polishing condition management method for CMP apparatus  
    Toshiyuki YOKOYAMA, Takashi FUJITA, Katsunori TANAKA
  • 特開2008-266693:Method for removing conductive film by electrolytic processing and electrolytic processing apparatus  
    Takashi FUJITA, Kyoji WATANABE
  • 特開2008-266692:Electrochemical machining device  
    Takashi FUJITA, Kyoji WATANABE
  • 特開2008-266691:Electrolytic processing apparatus and electrolytic processing method  
    Takashi FUJITA, Kyoji WATANABE
  • 特開2008-258510:Polishing condition management apparatus and polishing condition management method for CMP apparatus  
    Toshiyuki YOKOYAMA, Takashi FUJITA, Katsunori TANAKA
  • 特許5219395号:Wafer polishing monitor method and apparatus  
    Takashi FUJITA, Toshiyuki YOKOYAMA, Keita KITADE
  • 特開2008-238375:CMP machine platen  
    Kyouji WATANABE, Takashi FUJITA
  • 特開2008-240038:Electrolytic machining amount control method and electrolytic machining apparatus  
    Takashi FUJITA
  • 特許5116330号:Electrolytic processing unit device and electrolytic processing cleaning and drying method  
    Takashi FUJITA, Kyouji WATANABE
  • 特開2007-150359:Wafer surface oxidative modification prevention device and wafer surface oxidative modification prevention method  
    Takashi FUJITA
  • 特開2008-166449:End point detection method applying resonance phenomenon, end point detection apparatus, chemical mechanical polishing apparatus equipped with the same, and semiconductor device produced by the chemical mechanical polishing apparatus  
    Keita KITADE, Osamu MATSUSHITA, Takashi FUJITA, Toshiyuki YOKOYAMA
  • 特開2008-085233:Coating device, coating method, polishing cleaning device and polishing cleaning method for preventing surface deterioration  
    Takashi FUJITA
  • 特許5080769号:Polishing method and polishing apparatus  
    Takashi FUJITA
  • 特許4140644号:Pad dresser, pad dressing method, and polishing apparatus  
    Takashi FUJITA
  • 特許4683222号:Wafer cleaning/drying apparatus and wafer cleaning/drying method  
    Takashi FUJITA
  • 特開2007-221072:Wafer cleaning/drying apparatus and wafer cleaning/drying method  
    Takashi FUJITA
  • 特開2007-207991:Wafer cleaning/drying apparatus and wafer cleaning/drying method  
    Takashi FUJITA
  • 特許4162001号:Wafer polishing apparatus and wafer polishing method  
    Takashi FUJITA
  • 特許4756583号:Polishing pad, pad dressing evaluation method, and polishing apparatus  
    Takashi FUJITあ
  • 特許4936040号:Pad dresser, pad dressing method, and polishing apparatus  
    Takashi FUJITA
  • 特開2007-048862:Polishing system and polishing method  
    Takashi FUJITA
  • 特開2007-036152:Wafer cleaning/drying method and wafer cleaning/drying apparatus  
    Takashi FUJITA
  • 特開2007-005466:Polishing method and polishing apparatus  
    Takashi FUJITA, Minako ISHIKURA, Naoko KAWAI, Yoshitaka MORIOKA
  • 特開2007-005463:Polishing apparatus and polishing method  
    Takashi FUJITA, Akira UEKIHARA
  • 特開2006-351928:Polishing method and polishing apparatus  
    Takashi FUJITA, Minako ISHIKURA, Naoko KAWAI, Yoshitaka MORIOKA, Osamu KINOSHITA
  • 特開2006-237391:Method for evaluating surface condition of polishing pad  
    Takashi FUJITA, Minako ISHIKURA, Naoko KAWAI, Yoshitaka MORIOKA
  • 特開2006-231436:Polishing slurry and polishing method  
    Takashi FUJITA, Minako ISHIKURA, Naoko KAWAI, Yoshitaka MORIOKA
  • 特許4582409号:Electrolytic processing apparatus and processing method  
    Takashi FUJITA
  • 特許4446246号:Work suction device  
    Takashi FUJITA
  • 特開2006-043857:Polishing pad and polishing pad observation device  
    Takashi FUJITA, Yoshikazu OZAWA
  • 特開2005-347530:Polishing pad treatment method and chemical mechanical polishing apparatus  
    Takashi FUJITA
  • 特開2005-340718:Polishing pad and chemical mechanical polishing device  
    Takashi FUJITA
  • 特開2005-317625:Chemical mechanical polishing apparatus and wafer  
    Takashi FUJITA, OSamu KINOSHITA
  • 特開2004-111940:Polishing pad, polishing apparatus using the pad, and polishing method  
    Takashi FUJITA, Katsuyuki TANABE, Seiji ABE, Toshiro DOI
  • 特開2005-034935:Work holding head and processing apparatus with the work holding head  
    Takashi FUJITA
  • 特開2005-022028:Dressing device for polishing pad and processing device with the device  
    Takashi FUJITA
  • 特開2005-019439:Work holding head, polishing apparatus with the work holding head, wafer delivery method, wafer delivery apparatus, and wafer processing apparatus using the same  
  • 特開2005-019439:Work holding head and polishing apparatus with the work holding head  
    Takashi FUJITA
  • 特開2004-253725:Wafer polishing machine  
    Takashi FUJITA
  • 特許2004-253724:Wafer polishing machine  
    Takashi FUJITA
  • 特開2004-214525:Wafer polishing machine  
    Takashi FUJITA
  • 特開2004-148432:Wafer polishing machine  
    Takashi FUJITA
  • 特開2004-063482:Polishing apparatus and polishing pad processing method  
    Takashi FUJITA, Osamu KINOSHITA
  • 特開2004-047876:Polishing apparatus and polishing method  
    Takashi FUJITA
  • 特開2004-039968:Polishing machine  
    Takashi FUJITA
  • 特開2004-022940:Polishing equipment, polishing method, wafer save program  
    Takashi FUJITA
  • 特開2004-001152:Dresser, dressing method, polishing apparatus, and polishing method  
    Takashi FUJITA
  • 特開2003-332274:Chemical mechanical polishing method and chemical mechanical polishing apparatus  
    Toshiro DOI, Takashi FUJITA
  • 特許3882992号:Wafer polishing method and apparatus  
    Toshiro DOI, Takashi FUJITA
  • 特開2003-179014:Polishing machine  
    Takashi FUJITA
  • 特開2003-179017:Polishing apparatus and method of dressing polishing pad in polishing apparatus  
    Takashi FUJITA
  • 特開2003-170346:Dressing device for polishing pad and polishing device  
    Takashi FUJITA
  • 特開2003-145424:Dressing device for polishing pad and polishing device  
    Takashi FUJITA
  • 特開2003-136403:Dressing device for polishing pad and polishing device  
    Takashi FUJITA
  • 特開2003-089051:Polishing machine  
    Takashi FUJITA
  • 特開2003-086647:Polishing evaluation monitor wafer  
    Takashi FUJITA
  • 特開2003-080451:Polishing apparatus and polishing method  
    Toshiro DOI, Takashi FUJITA
  • 特開2003-068689:Feedback polishing apparatus and polishing method  
    Takashi FUJITA, Kunio NOMOTO
  • 特開2003-025218:Wafer polishing machine  
    Takashi FUJITA
  • 特開2003-025217:Polishing machine  
    Takashi FUJITA
  • 特開2002-346911:Polishing machine  
    Takashi FUJITA, Mikhail TOUZAV
  • 特開2002-343750:Wafer polishing method and apparatus  
    Takashi FUJITA
  • 特開2002-018709:Wafer polishing machine  
    Mikhail TOUZAV, Satomi MICHIYA, Takashi FUJITA, Hirohiko IZUMI, Minoru NUMOTO
  • 特開2001-219369:Polishing shape prediction method, polishing method, and polishing apparatus  
    Takashi FUJITA, Meii DAN, Yuzo KOUZAI, Motoyuki OHARA
  • 特開2000-246618:Dresser for polishing pad  
    Takashi FUJITA, Shunichi SHIBUKI
  • 特開平11-354480:Wafer cleaning method and wafer cleaning apparatus  
    Naoyuki KURATOMI, Takashi FUJITA
  • 特開平10-156705:Polishing apparatus and polishing method  
    Takashi FUJITA, Yuzo Kouzai, Motoyuki OHARA
  • 特許3672398号:Polishing apparatus and polishing method  
    Takashi FUJITA
  • 特許3788533号:Polishing apparatus and polishing method  
    Takashi FUJITA, Masafumi GOTO, Kunio NOMOTO
  • 特許3880102号:Polishing apparatus and polishing method  
    Takashi FUJITA
  • 特許3824345号:Polishing method and polishing apparatus  
    Kazuto HASEGAWA, Takashi FUJITA
  • 特開平08-174417:Polishing apparatus and polishing amount control method  
    Takashi FUJITA, Toshiyasu BEPPU, Shunichi SHIBUKI
  • 特許3175511号:Polishing device and polishing pad attachment/detachment device  
    Takashi FUJITA
  • 特開平08-181092:Holding plate for polishing semiconductor wafers  
    Takashi FUJITA
  • 特許3109558号:Wafer holder  
    Takashi FUJITA, Junji WATANABE
  • 特開平08-141521:Cleaning device  
    Takashi FUJITA
  • 特許3082603号:Wafer transfer device  
    Takashi FUJITA, Shunichi SHIBUKI, Toshiyasu BEPPU
  • 特開平08-148455:Thin film surface flattening method  
    Shunichi SHIBUKI, Takashi FUJITA, Yasuo MINAMIGAWA, Toshiyasu BEPPU, Junji WATANABE
  • 特開平07-052033:Polishing machine  
    Takashi FUJITA
  • 特開平06-155253:Manufacturing method of wafer  
    Takashi FUJITA