MATSUSHIKA Akinori

Department of Biotechnology and ChemistryProfessor/Manager

Last Updated :2025/06/20

■Researcher basic information

Research Keyword

  • Screening for useful microorganisms from nature   environmental stress tolerance   食品変敗   代謝改変   有用遺伝子のスクリーニング   発酵阻害物耐性   高温発酵   耐熱性   キシロース発酵   五炭糖資化性   実用酵母   

Research Field

  • Life sciences / Food sciences
  • Life sciences / Molecular biology
  • Manufacturing technology (mechanical, electrical/electronic, chemical engineering) / Applied biofunctional and bioprocess engineering
  • Life sciences / Applied microbiology

■Career

Career

  • 2022/04 - Today  近畿大学大学院システム工学研究科 生物化学コース教授(兼務)
  • 2022/04 - Today  Kindai University次世代基盤技術研究所 先端化学生命工学研究センター教授(兼務)
  • 2021/04 - Today  近畿大学 工学部 化学生命工学科 教授
  • 2017/04 - 2021/03  産業技術総合研究所機能化学研究部門研究グループ長
  • 2015/04 - 2017/03  産業技術総合研究所 機能化学研究部門 主任研究員
  • 2011/05 - 2012/04  米国立再生可能エネルギー研究所 (NREL) 在外研究員

Member History

  • 2021/07 - Today   National Institute of Advanced Industrial Science and Technology   Member of the Microbial Experiment Safety Committee
  • 2019/07 -2022/03   Fishery growth industrial technology development project "Development of purely domestic fish feed using hydrogen bacteria"   External committee member

■Research activity information

Award

  • 2025/03 日本農芸化学会中四国支部 日本農芸化学会中四国支部 奨励賞(学生部門)
     
    受賞者: 森口大輔(指導学生)
  • 2025/03 日本農芸化学会中四国支部 日本農芸化学会中四国支部 奨励賞(学生部門)
     
    受賞者: 菅原悠李(指導学生)
  • 2024/09 日本生物工学会 32nd Biotechnology Paper Award
  • 2023/02 日本農芸化学会中四国支部 日本農芸化学会中四国支部 奨励賞(学生部門)
     
    受賞者: 森口大輔(指導学生)
  • 2016/09 第68回日本生物工学会大会トピックス選出
     
    受賞者: 松鹿 昭則, 鈴木 俊宏, 根冝 香奈子, 橋本 智代, 五島 徹也, 星野 保
  • 2015/06 平成27年度農林水産技術会議事務局長賞
     
    受賞者: 松鹿 昭則
  • 2007/03 2007年(Vol.71)B.B.B.論文賞
  • 2002/03 第9回日本植物生理学会論文賞

Paper

  • Hironaga Akita; Daisuke Moriguchi; Akinori Matsushika
    Fermentation MDPI AG 11 (3) 146 - 146 2025/03 [Refereed]
     
    Interest in the production of bioethanol from inedible biomass is growing worldwide because of its sustainable supply and lack of competition with food supplies. Candida krusei (also known as Pichia kudriavzevii or Issatchenkia orientalis) is one of the most suitable thermotolerant yeasts used in the simultaneous saccharification and fermentation process for bioethanol production. In the production of bioethanol from lignocellulosic biomass as a feedstock, various environmental conditions occur, and the stress tolerance capacity of C. krusei, especially its low pH and tolerance to inhibitors, limits its practical application. In this study, to select a suitable second-generation bioethanol-producing strain, the tolerance capacity of five available C. krusei strains (NBRC0584, NBRC0841, NBRC1162, NBRC1395 and NBRC1664) was characterized. Spot assay and growth experiment results showed that among the five C. krusei strains, C. krusei NBRC1664 showed superior tolerance capacity for low pH and inhibitors. Furthermore, this strain efficiently produced ethanol from glucose under low pH conditions with or without sulfate. A comparative analysis of the draft genome sequences suggested that Opy2, Sln1 and Cdc24 in the HOG pathway are conserved only in C. krusei NBRC1664, which may contribute to its superior tolerance to low pH levels. Moreover, amino acid sequence alignment showed that aldehyde dehydrogenase family proteins, which catalyze the degradation of cyclic aldehydes, are commonly conserved in C. krusei. In addition, the increased transcription levels in C. krusei NBRC1664 could play a role in its higher tolerance to inhibitors. These results suggest that C. krusei NBRC1664 is a more suitable strain for application in industrial processes for second-generation bioethanol production.
  • Hironaga Akita; Akinori Matsushika
    Applied Biosciences MDPI AG 3 (3) 296 - 309 2024/07 [Refereed]
     
    As isobutanol exhibits higher energy density and lower hygroscopicity than ethanol, it is considered a better candidate biofuel. The sustainable supply of inedible biomass and lack of competition with the food supply have stimulated significant worldwide interest in the production of isobutanol from this resource. Both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) have been applied to isobutanol production to effectively utilize inedible biomass as a feedstock. However, both processes have various challenges, including low isobutanol yield and high production costs. This review summarizes the potential of isobutanol as a biofuel, methods for conferring isobutanol productivity, recent experimental studies, and developments in both SHF and SSF with the isobutanol-producing strains. Challenges to increasing the isobutanol yield and various suggestions for improvements to enable commercial production are also discussed.
  • Hironaga Akita; Akinori Matsushika
    Fermentation MDPI AG 10 (7) 331 - 331 2024/06 [Refereed]
     
    The thermotolerant yeast Pichia kudriavzevii (previously known as Issatchenkia orientalis), can produce ethanol from a variety of carbon sources and grows at around 45 °C. Thus, this yeast is considered a useful biocatalyst for producing ethanol from lignocellulose through simultaneous saccharification and fermentation (SSF). SSF has several advantages, such as a simplified manufacturing process, ease of operation and reduced energy input. Using P. kudriavzevii NBRC1279 and NBRC1664, we previously succeeded in producing ethanol through SSF; however, the extent to which inhibitors by-produced from lignocellulose hydrolysis affect the growth and ethanol productivity of the two strains remains to be investigated. In this study, to better understand the inhibitor tolerance capacity of the two strains, spot assay, growth experiment, real-time quantitative PCR (RT-qPCR) analysis and multiple sequence alignment analysis were carried out. When P. kudriavzevii NBRC1279 and NBRC1664, as well as Saccharomyces cerevisiae BY4742 as a control, were cultured on SCD plates containing 17% ethanol, 42 mM furfural, 56 mM 5-hydroxymethylfurfural (HMF) or 10 mM vanillin, only P. kudriavzevii NBRC1664 was able to grow under all conditions. Moreover, the inhibitor tolerance capacity of P. kudriavzevii NBRC1664 was greater than those of other strains using SCD medium containing the same concentrations of various inhibitors. When an RT-qPCR analysis of seven gene sequences from aldehyde dehydrogenase and the aldehyde dehydrogenase family protein (ADHF) was performed using P. kudriavzevii NBRC1664 cultivated in the presence of 56 mM HMF, ADHF1 and ADHF2 were up-regulated in the early logarithmic growth phase. Moreover, a multiple sequence alignment of the amino acid sequences of ADHF1, ADHF2 and the known ADH suggested that ADHF1 and ADHF2 may catalyze the reversible NAD+-dependent oxidation of HMF. Our data may be useful for future studies on the metabolic engineering of more useful strains for ethanol production from lignocellulose.
  • Isabela de Oliveira Pereira; Ângela A. dos Santos; Nick C. Guimarães; Cleilton S. Lima; Eduardo Zanella; Akinori Matsushika; Sarita C. Rabelo; Boris U. Stambuk; Jaciane L. Ienczak
    Biotechnology and Bioengineering Wiley 0006-3592 2024/01 [Refereed]
     
    Abstract The integration of first‐ (1G) and second‐generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT‐1 was genetically modified for xylose consumption and used for co‐fermentation of sucrose, fructose, glucose, and xylose. The fed‐batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L−1 h−1, 0.39 g g−1 of ethanol yield, and 44.5 g L−1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co‐fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co‐fermentation employing a recombinant yeast.
  • Viviani Tadioto; Junior Romeo Deoti; Caroline Müller; Bruna Raquel de Souza; Odinei Fogolari; Marcela Purificação; Anderson Giehl; Letícia Deoti; Ana Carolina Lucaroni; Akinori Matsushika; Helen Treichel; Boris Ugarte Stambuk; Sergio Luiz Alves Junior
    Bioprocess and Biosystems Engineering Springer Science and Business Media LLC 1615-7591 2023/08 [Refereed]
  • Kaisei Takemura; Junya Kato; Setsu Kato; Tatsuya Fujii; Keisuke Wada; Yuki Iwasaki; Yoshiteru Aoi; Akinori Matsushika; Tomotake Morita; Katsuji Murakami; Yutaka Nakashimada
    Journal of bioscience and bioengineering 136 (1) 13 - 19 2023/07 [Refereed]
     
    Acetogens grow autotrophically and use hydrogen (H2) as the energy source to fix carbon dioxide (CO2). This feature can be applied to gas fermentation, contributing to a circular economy. A challenge is the gain of cellular energy from H2 oxidation, which is substantially low, especially when acetate formation coupled with ATP production is diverted to other chemicals in engineered strains. Indeed, an engineered strain of the thermophilic acetogen Moorella thermoacetica that produces acetone lost autotrophic growth on H2 and CO2. We aimed to recover autotrophic growth and enhance acetone production, in which ATP production was assumed to be a limiting factor, by supplementing with electron acceptors. Among the four selected electron acceptors, thiosulfate and dimethyl sulfoxide (DMSO) enhanced both bacterial growth and acetone titers. DMSO was the most effective and was further analyzed. We showed that DMSO supplementation enhanced intracellular ATP levels, leading to increased acetone production. Although DMSO is an organic compound, it functions as an electron acceptor, not a carbon source. Thus, supplying electron acceptors is a potential strategy to complement the low ATP production caused by metabolic engineering and to improve chemical production from H2 and CO2.
  • Hironaga Akita; Akinori Matsushika
    Fermentation MDPI AG 9 (6) 559 - 559 2023/06 [Refereed]
     
    Simultaneous saccharification and fermentation (SSF) has been investigated for the efficient production of ethanol because it has several advantages such as simplifying the manufacturing process, operating easily, and reducing energy input. Previously, using lignocellulosic biomass as source materials, we succeeded in producing ethanol by SSF with Pichia kudriavzevii NBRC1279 and NBRC1664. However, various acids that fermentation inhibitors are also produced by the hydrolysis of lignocellulosic biomass, and the extent to which these acids affect the growth and ethanol productivity of the two strains has not yet been investigated. In this study, to better understand the acid tolerance mechanism of the two strains, a spot assay, growth experiment, and transcriptome analysis were carried out using Saccharomyces cerevisiae BY4742 as a control. When the three strains were cultured in SCD medium containing 15 mM formic acid, 35 mM sulfuric acid, 60 mM hydrochloric acid, 100 mM acetic acid, or 550 mM lactic acid, only P. kudriavzevii NBRC1664 could grow well under all conditions, and it showed the fastest growth rates. The transcriptome analysis showed that “MAPK signaling pathway-yeast” was significantly enriched in P. kudriavzevii NBRC1664 cultured with 60 mM hydrochloric acid, and most genes involved in the high osmolarity glycerol (HOG) pathway were up-regulated. Therefore, the up-regulation of the HOG pathway may be important for adapting to acid stress in P. kudriavzevii. Moreover, the log2-transformed fold change value in the expression level of Gpd1 was 1.3-fold higher in P. kudriavzevii NBRC1664 than in P. kudriavzevii NBRC1279, indicating that high Gpd1 expression may be accountable for the higher acid tolerance of P. kudriavzevii NBRC1664. The transcriptome analysis performed in this study provides preliminary knowledge of the molecular mechanism of acid stress tolerance in P. kudriavzevii. Our data may be useful for future studies on methods to improve the tolerance of P. kudriavzevii to acids produced from lignocellulose hydrolysis.
  • Shunsuke Kobayashi; Junya Kato; Keisuke Wada; Kaisei Takemura; Setsu Kato; Tatsuya Fujii; Yuki Iwasaki; Yoshiteru Aoi; Tomotake Morita; Akinori Matsushika; Katsuji Murakami; Yutaka Nakashimada
    Frontiers in microbiology 13 897066 - 897066 2022/05 [Refereed]
     
    Hydrogen (H2) converted to reducing equivalents is used by acetogens to fix and metabolize carbon dioxide (CO2) to acetate. The utilization of H2 enables not only autotrophic growth, but also mixotrophic metabolism in acetogens, enhancing carbon utilization. This feature seems useful, especially when the carbon utilization efficiency of organic carbon sources is lowered by metabolic engineering to produce reduced chemicals, such as ethanol. The potential advantage was tested using engineered strains of Moorella thermoacetica that produce ethanol. By adding H2 to the fructose-supplied culture, the engineered strains produced increased levels of acetate, and a slight increase in ethanol was observed. The utilization of a knockout strain of the major acetate production pathway, aimed at increasing the carbon flux to ethanol, was unexpectedly hindered by H2-mediated growth inhibition in a dose-dependent manner. Metabolomic analysis showed a significant increase in intracellular NADH levels due to H2 in the ethanol-producing strain. Higher NADH level was shown to be the cause of growth inhibition because the decrease in NADH level by dimethyl sulfoxide (DMSO) reduction recovered the growth. When H2 was not supplemented, the intracellular NADH level was balanced by the reversible electron transfer from NADH oxidation to H2 production in the ethanol-producing strain. Therefore, reversible hydrogenase activity confers the ability and flexibility to balance the intracellular redox state of M. thermoacetica. Tuning of the redox balance is required in order to benefit from H2-supplemented mixotrophy, which was confirmed by engineering to produce acetone.
  • Kaisei Takemura; Junya Kato; Setsu Kato; Tatsuya Fujii; Keisuke Wada; Yuki Iwasaki; Yoshiteru Aoi; Akinori Matsushika; Katsuji Murakami; Yutaka Nakashimada
    Journal of bioscience and bioengineering 132 (6) 569 - 574 2021/09 [Refereed]
     
    Gas fermentation is a promising biological process for the conversion of CO2 or syngas into valuable chemicals. Homoacetogens are microorganisms growing autotrophically using CO2 and H2 or CO and metabolizing them to form acetate coupled with energy conservation. The challenge in the metabolic engineering of the homoacetogens is divergence of the acetate formation, whose intermediate is acetyl-CoA, to a targeted chemical with sufficient production of adenosine triphosphate (ATP). In this study, we report that an engineered strain of the thermophilic homoacetogen Moorella thermoacetica, in which a pool of acetyl-CoA is diverted to ethanol without ATP production, can maintain autotrophic growth on syngas. We estimated the ATP production in the engineered strains under different gaseous compositions by considering redox-balanced metabolism for ethanol and acetate formation. The culture test showed that the combination of retaining a level of acetate production and supplying the energy-rich CO allowed maintenance of the autotrophic growth during ethanol production. In contrast, autotrophy was collapsed by complete elimination of the acetate pathway or supplementation of H2-CO2. We showed that the intracellular level of ATP was significantly lowered on H2-CO2 in consistent with the incompetence. In the meantime, the complete disruption of the acetate pathway resulted in the redox imbalance to produce ethanol from CO, albeit a small loss in the ATP production. Thus, preservation of a fraction of acetate formation is required to maintain sufficient ATP and balanced redox in CO-containing gases for ethanol production.
  • Isabela de Oliveira Pereira; Ângela Alves Dos Santos; Davi L Gonçalves; Marcela Purificação; Nick Candiotto Guimarães; Robson Tramontina; Natalia Coutouné; Eduardo Zanella; Akinori Matsushika; Boris U Stambuk; Jaciane Lutz Ienczak
    FEMS yeast research 21 (6) foab048 - foab048 2021/09 [Refereed]
     
    First-generation ethanol (E1G) is based on the fermentation of sugars released from saccharine or starch sources, while second-generation ethanol (E2G) is focused on the fermentation of sugars released from lignocellulosic feedstocks. During the fractionation process to release sugars from hemicelluloses (mainly xylose), some inhibitor compounds are released hindering fermentation. Thus, the biggest challenge of using hemicellulosic hydrolysate is selecting strains and processes able to efficiently ferment xylose and tolerate inhibitors. With the aim of diluting inhibitors, sugarcane molasses (80% of sucrose content) can be mixed to hemicellulosic hydrolysate in an integrated E1G-E2G process. Cofermentations of xylose and sucrose were evaluated for the native xylose consumer Spathaspora passalidarum and a recombinant Saccharomyces cerevisiae strain. The industrial S. cerevisiae strain CAT-1 was modified to overexpress the XYL1, XYL2, XKS1 genes and a mutant ([4-59Δ]HXT1) version of the low-affinity HXT1 permease, generating strain MP-C5H1. Although S. passalidarum showed better results for xylose fermentation, this yeast showed intracellular sucrose hydrolysis and low sucrose consumption in microaerobic conditions. Recombinant S. cerevisiae showed the best performance for cofermentation, and a batch strategy at high cell density in bioreactor achieved unprecedented results of ethanol yield, titer and volumetric productivity in E1G-E2G production process.
  • Hironaga Akita; Yuya Itoiri; Noriyo Takeda; Zen-Ichiro Kimura; Hiroyuki Inoue; Akinori Matsushika
    Microbiology resource announcements 10 (25) e0034321  2021/06 [Refereed]
     
    Klebsiella pneumoniae subsp. pneumoniae CCI2 was isolated from leaf soil collected in Hiroshima Prefecture, Japan. The draft genome sequence comprises 78 contigs and contains 5,075,115 bp with a G+C content of 57.7%.
  • Tatsuya Fujii; Hiroyuki Inoue; Akinori Matsushika
    Applied biochemistry and biotechnology 193 (10) 3163 - 3172 2021/06 [Refereed]
     
    The filamentous fungus Talaromyces cellulolyticus is a well-characterized cellulolytic and hemicellulolytic enzyme producer. In this study, the function of the tclB2 gene, which is a homolog of the manR/clrB/clr-2 gene in other filamentous fungi, in mannanolytic enzyme production by T. cellulolyticus was investigated. When a tclB2-disrupted strain (YDTclB) was grown in the presence of glucomannan, the production of β-mannanase, β-mannosidase, and α-galactosidase was decreased at the protein and transcriptional levels when compared to the control strain. In addition, a tclB2-overexpressing strain (YHTclB) showed higher β-mannanase and β-mannosidase production. When cellulose was used as a carbon source, the expression of genes encoding mannanolytic enzymes also decreased in YDTclB. These results suggested that TclB2 contributes to mannanolytic enzyme production in T. cellulolyticus. This work is the first study to identify a transcriptional regulator of mannanolytic enzyme genes in T. cellulolyticus.
  • Hironaga Akita; Tetsuya Goshima; Toshihiro Suzuki; Yuya Itoiri; Zen-ichiro Kimura; Akinori Matsushika
    Fermentation MDPI AG 7 (2) 83 - 83 2021/05 [Refereed]
     
    Simultaneous saccharification and fermentation (SSF) is capable of performing enzymatic saccharification and fermentation for biofuel production in a single vessel. Thus, SSF has several advantages such as simplifying the manufacturing process, operating easily, and reducing energy input. Here, we describe the application of Pichia kudriavzevii NBRC1279 and NBRC1664 to SSF for bioethanol production. When each strain was incubated for 144 h at 35 °C with Japanese cedar particles, the highest ethanol concentrations were reached 21.9 ± 0.50 g/L and 23.8 ± 3.9 g/L, respectively. In addition, 21.6 ± 0.29 g/L and 21.3 ± 0.21 g/L of bioethanol were produced from Japanese eucalyptus particles when each strain was incubated for 144 h at 30 °C. Although previous methods require pretreatment of the source material, our method does not require pretreatment, which is an advantage for industrial use. To elucidate the different characteristics of the strains, we performed genome sequencing and genome comparison. Based on the results of the eggNOG categories and the resulting Venn diagram, the functional abilities of both strains were similar. However, strain NBRC1279 showed five retrotransposon protein genes in the draft genome sequence, which indicated that the stress tolerance of both strains is slightly different.
  • Hironaga Akita; Yuya Itoiri; Noriyo Takeda; Akinori Matsushika; Zen-Ichiro Kimura
    Archives of microbiology 203 (4) 1787 - 1793 2021/05 [Refereed]
     
    Strain CCI5, an oligotrophic bacterium, was isolated from leaf soil collected in Japan. Strain CCI5 grew at temperatures between 25 °C and 43 °C (optimum temperature, 40 °C) and at pHs between 6.0 and 10.0 (optimum pH, 9.0). Its major fatty acids were anteiso-C15:0 and iso-C16:0, and menaquinone 7 was the only detected quinone system. In a phylogenetic analysis based on 16S rRNA gene sequences, strain CCI5 presented as a member of the genus Paenibacillus. Moreover, multilocus sequence analysis based on partial sequences of the atpD, dnaA, gmk, and infB genes showed that strain CCI5 tightly clustered with P. glycanilyticus DS-1T. The draft genome of strain CCI5 consisted of 6,864,972 bp with a G+C content of 50.7% and comprised 6,189 predicted coding sequences. The genome average nucleotide identity value (97.8%) between strain CCI5 and P. glycanilyticus DS-1T was below the cut-off value for prokaryotic subspecies delineation. Based on its phenotypic, chemotaxonomic, and phylogenetic features, strain CCI5 (= HUT-8145T = KCTC 43270T) can be considered as a novel subspecies within the genus Paenibacillus with the proposed name Paenibacillus glycanilyticus subsp. hiroshimensis subsp. nov.
  • Junya Kato; Kaisei Takemura; Setsu Kato; Tatsuya Fujii; Keisuke Wada; Yuki Iwasaki; Yoshiteru Aoi; Akinori Matsushika; Katsuji Murakami; Yutaka Nakashimada
    AMB Express 11 (1) 59 - 59 2021/04 [Refereed]
     
    Gas fermentation is one of the promising bioprocesses to convert CO2 or syngas to important chemicals. Thermophilic gas fermentation of volatile chemicals has the potential for the development of consolidated bioprocesses that can simultaneously separate products during fermentation. This study reports the production of acetone from CO2 and H2, CO, or syngas by introducing the acetone production pathway using acetyl-coenzyme A (Ac-CoA) and acetate produced via the Wood-Ljungdahl pathway in Moorella thermoacetica. Reducing the carbon flux from Ac-CoA to acetate through genetic engineering successfully enhanced acetone productivity, which varied on the basis of the gas composition. The highest acetone productivity was obtained with CO-H2, while autotrophic growth collapsed with CO2-H2. By adding H2 to CO, the acetone productivity from the same amount of carbon source increased compared to CO gas only, and the maximum specific acetone production rate also increased from 0.04 to 0.09 g-acetone/g-dry cell/h. Our development of the engineered thermophilic acetogen M. thermoacetica, which grows at a temperature higher than the boiling point of acetone (58 °C), would pave the way for developing a consolidated process with simplified and cost-effective recovery via condensation following gas fermentation.
  • Hironaga Akita; Yuya Itoiri; Noriyo Takeda; Zen-Ichiro Kimura; Hiroyuki Inoue; Akinori Matsushika
    Microbiology resource announcements 10 (4) 2021/01 [Refereed]
     
    Enterobacter oligotrophicus CCA3 was isolated from leaf soil collected in Hiroshima Prefecture, Japan. Here, we report the draft genome sequence of E. oligotrophicus CCA3. The draft genome sequence of E. oligotrophicus CCA3 consists of 29 contigs of 4,425,100 bp, with a GC content of 54.2%.
  • Hironaga Akita; Yuya Itoiri; Noriyo Takeda; Zen-Ichiro Kimura; Hiroyuki Inoue; Akinori Matsushika
    Journal of genomics 9 1 - 5 2021/01 [Refereed]
     
    Strain CCI9, which was isolated from leaf soil collected in Japan, was capable of growth on poor-nutrient medium, at temperatures of 10°C to 45°C, at pHs of 4.5 to 10, and in the presence of 7.0% NaCl. We determined a draft genome sequence of strain CCI9, which consists of a total of 28 contigs containing 4,644,734 bp with a GC content of 56.1%. This assembly yielded 4,154 predicted coding sequences. Multilocus sequence analysis (MLSA) based on atpD, gyrB, infB, and rpoB gene sequences were performed to further identify strain CCI9. The MLSA revealed that strain CCI9 clustered tightly with Enterobacter roggenkampii EN-117T. Moreover, the average nucleotide identity value (98.6%) between genome sequences of strain CCI9 and E. roggenkampii EN-117T exceeds the cutoff value for prokaryotic subspecies delineation. Therefore, strain CCI9 was identified as E. roggenkampii CCI9. To clarify differences between E. roggenkampii EN-117T and CCI9, the coding proteins were compared against the eggNOG database.
  • Hironaga Akita; Yusuke Nakamichi; Tomotake Morita; Akinori Matsushika
    Biochimica et biophysica acta. Proteins and proteomics 1868 (10) 140476 - 140476 2020/10 [Refereed]
     
    meso-Diaminopimelate dehydrogenase (meso-DAPDH) catalyzes the reversible NADP+-dependent oxidative deamination of meso-2,6-diaminopimelate (meso-DAP) to produce l-2-amino-6-oxopimelate. meso-DAPDH is divided into two major clusters, types I and II, based on substrate specificity and structural characteristic. Here, we describe a novel type II meso-DAPDH from Thermosyntropha lipolytica (TlDAPDH). The gene encoding a putative TlDAPDH was expressed in Escherichia coli cells, and then the enzyme was purified 7.3-fold to homogeneity from the crude cell extract. The molecule of TlDAPDH seemed to form a hexamer, which is the typical structural characteristic of type II meso-DAPDHs. The purified enzyme exhibited oxidative deamination activity toward meso-DAP with both NADP+ and NAD+ as coenzymes. TlDAPDH exhibited reductive amination activity of corresponding 2-oxo acid to produce d-amino acid. In particular, the productivities for d-aspartate and d-glutamate have not been reported in the type II enzymes. The optimum pH and temperature for oxidative deamination of meso-DAP were 10.5 and 55°C, respectively. TlDAPDH retained more than 80% of its activity after incubation for 30 min at temperatures between 50°C and 65°C and in the pH range of 4.5-9.5. Moreover, the coenzyme and substrate recognition mechanisms of TlDAPDH were elucidated based on a multiple sequence alignment and the homology model. The results of these analyses suggested that the molecular mechanisms for coenzyme and substrate recognition of TlDAPDH were similar to those of meso-DAPDH from S. thermophilum, which is the representative type II enzyme. Based on the kinetic characteristics and structural comparison, TlDAPDH was considered to be a novel type II meso-DAPDH.
  • Hironaga Akita; Shinji Fujimoto; Keisuke Wada; Noriyo Takeda; Yuki Iwasaki; Tatsuya Fujii; Akinori Matsushika
    The Journal of general and applied microbiology 66 (4) 220 - 227 2020/09 [Refereed]
     
    The discharge of industrial dyes and their breakdown products are often environmentally harmful. Here, we describe a biodegradation method using Burkholderia multivorans CCA53, which exhibits a capacity to degrade azo dyes, particularly ethyl red. Under the optimized culture conditions, 100 μM ethyl red was degraded more than 99% after incubation for 8 h. Real-time PCR analysis of azoR1 and azoR2, encoding two azoreductases, revealed that transcription level of these genes is enhanced at early phase under the optimized conditions. For a more practical approach, hydrolysates were prepared from eucalyptus or Japanese cedar chips or rice straw, and rice straw hydrolysate was used as the best medium for ethyl red biodegradation. Under those conditions, ethyl red was also degraded with high efficiency (>91%). We have thus constructed a potentially economical method for the biodegradation of ethyl red.
  • Yusuke Nakamichi; Tatsuya Fujii; Masahiro Watanabe; Akinori Matsushika; Hiroyuki Inoue
    Acta crystallographica. Section F, Structural biology communications 76 (Pt 8) 341 - 349 2020/08 [Refereed]
     
    GH30-7 endoxylanase C from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C) belongs to glycoside hydrolase family 30 subfamily 7, and specifically releases 22-(4-O-methyl-α-D-glucuronosyl)-xylobiose from glucuronoxylan, as well as various arabino-xylooligosaccharides from arabinoxylan. TcXyn30C has a modular structure consisting of a catalytic domain and a C-terminal cellulose-binding module 1 (CBM1). In this study, the crystal structure of a TcXyn30C mutant which lacks the CBM1 domain was determined at 1.65 Å resolution. The structure of the active site of TcXyn30C was compared with that of the bifunctional GH30-7 xylanase B from T. cellulolyticus (TcXyn30B), which exhibits glucuronoxylanase and xylobiohydrolase activities. The results revealed that TcXyn30C has a conserved structural feature for recognizing the 4-O-methyl-α-D-glucuronic acid (MeGlcA) substituent in subsite -2b. Additionally, the results demonstrated that Phe47 contributes significantly to catalysis by TcXyn30C. Phe47 is located in subsite -2b and also near the C-3 hydroxyl group of a xylose residue in subsite -2a. Substitution of Phe47 with an arginine residue caused a remarkable decrease in the catalytic efficiency towards arabinoxylan, suggesting the importance of Phe47 in arabinoxylan hydrolysis. These findings indicate that subsite -2b of TcXyn30C has unique structural features that interact with arabinofuranose and MeGlcA substituents.
  • Hironaga Akita; Yusuke Nakamichi; Tomotake Morita; Akinori Matsushika
    MicrobiologyOpen 9 (8) e1059 - e1059 2020/08 [Refereed]
  • Keisuke Wada; Tatsuya Fujii; Hiroyuki Inoue; Hironaga Akita; Tomotake Morita; Akinori Matsushika
    Fermentation MDPI AG 6 (3) 70 - 70 2020/07 [Refereed]
     
    Pyruvate, a potential precursor of various chemicals, is one of the fundamental chemicals produced by the fermentation process. We previously reported a pyruvate-producing Escherichia coli strain LAFCPCPt-accBC-aceE (PYR) that has the potential to be applied to the industrial production of pyruvate. In this study, the availability of the PYR strain for the production of pyruvate-derivative chemicals was evaluated using a d-lactate-producing strain (LAC) based on the PYR strain. The LAC strain expresses a d-lactate dehydrogenase-encoding gene from Lactobacillus bulgaricus under the control of a T7 expression system. The d-lactate productivity of the LAC strain was further improved by limiting aeration and changing the induction period for the expression of d-lactate dehydrogenase-encoding gene expression. Under combined conditions, the LAC strain produced d-lactate at 21.7 ± 1.4 g·L−1, which was compatible with the pyruvate production by the PYR strain (26.1 ± 0.9 g·L−1). These results suggest that we have succeeded in the effective conversion of pyruvate to d-lactate in the LAC strain, demonstrating the wide versatility of the parental PYR strain as basal strain for various chemicals production.
  • Yusuke Nakamichi; Masahiro Watanabe; Akinori Matsushika; Hiroyuki Inoue
    FEBS open bio 10 (6) 1180 - 1189 2020/06 [Refereed]
     
    Xylanase B, a member of subfamily 7 of the GH30 (glycoside hydrolase family 30) from Talaromyces cellulolyticus (TcXyn30B), is a bifunctional enzyme with glucuronoxylanase and xylobiohydrolase activities. In the present study, crystal structures of the native enzyme and the enzyme-product complex of TcXyn30B expressed in Pichia pastoris were determined at resolutions of 1.60 and 1.65 Å, respectively. The enzyme complexed with 22 -(4-O-methyl-α-d-glucuronyl)-xylobiose (U4m2 X) revealed that TcXyn30B strictly recognizes both the C-6 carboxyl group and the 4-O-methyl group of the 4-O-methyl-α-d-glucuronyl side chain by the conserved residues in GH30-7 endoxylanases. The crystal structure and site-directed mutagenesis indicated that Asn-93 on the β2-α2-loop interacts with the non-reducing end of the xylose residue at subsite-2 and is likely to be involved in xylobiohydrolase activity. These findings provide structural insight into the mechanisms of substrate recognition of GH30-7 glucuronoxylanase and xylobiohydrolase.
  • Tatsuya Fujii; Akinori Matsushika
    Applied biochemistry and biotechnology 190 (4) 1360 - 1370 2020/04 [Refereed]
     
    Talaromyces cellulolyticus is a promising strain for industrial cellulase production. In this study, the thaB gene, which is a homologue of the hap2/B gene in other filamentous fungi, was isolated and characterized. When grown in the presence of cellulose, culture supernatants of a thaB-disrupted strain (YDTha) exhibited decreased cellulase and xylanase enzymatic activities compared to the control strain. Furthermore, YDTha exhibited lower expression of the genes encoding cellulases and xylanases compared to the control strain. When cellobiose and lactose (soluble carbon sources) were used as carbon sources, the expression of the genes encoding cellulases and xylanases was decreased in both the YDTha and the control strains, though the expression levels in YDTha remained lower than those in the control strain. These results suggested that thaB has a positive role in cellulase and xylanase production in T. cellulolyticus.
  • Akita H; Itoiri Y; Ihara S; Takeda N; Matsushika A; Kimura Z
    Arch Microbiol 202 (7) 1757 - 1762 2020/02 [Refereed]
  • Akita H; Itoiri Y; Kumagai A; Takeda N; Matsushika A; Oshiki M; Kimura Z
    J Genomic Ivyspring International Publisher 8 21 - 24 1839-9940 2020/01 [Refereed]
  • Yusuke Nakamichi; Tatsuya Fujii; Thierry Fouquet; Akinori Matsushika; Hiroyuki Inoue
    Applied and environmental microbiology 85 (22) 2019/11 [Refereed]
     
    Glycoside hydrolase family 30 subfamily 7 (GH30-7) enzymes include various types of xylanases, such as glucuronoxylanase, endoxylanase, xylobiohydrolase, and reducing-end xylose-releasing exoxylanase. Here, we characterized the mode of action and gene expression of the GH30-7 endoxylanase from the cellulolytic fungus Talaromyces cellulolyticus (TcXyn30C). TcXyn30C has a modular structure consisting of a GH30-7 catalytic domain and a C-terminal cellulose binding module 1, whose cellulose-binding ability has been confirmed. Sequence alignment of GH30-7 xylanases exhibited that TcXyn30C has a conserved Phe residue at the position corresponding to a conserved Arg residue in GH30-7 glucuronoxylanases, which is required for the recognition of the 4-O-methyl-α-d-glucuronic acid (MeGlcA) substituent. TcXyn30C degraded both glucuronoxylan and arabinoxylan with similar kinetic constants and mainly produced linear xylooligosaccharides (XOSs) with 2 to 3 degrees of polymerization, in an endo manner. Notably, the hydrolysis of glucuronoxylan caused an accumulation of 22-(MeGlcA)-xylobiose (U4m2X). The production of this acidic XOS is likely to proceed via multistep reactions by putative glucuronoxylanase activity that produces 22-(MeGlcA)-XOSs (X n U4m2X, n ≥ 0) in the initial stages of the hydrolysis and by specific release of U4m2X from a mixture containing X n U4m2X. Our results suggest that the unique endoxylanase activity of TcXyn30C may be applicable to the production of linear and acidic XOSs. The gene xyn30C was located adjacent to the putative GH62 arabinofuranosidase gene (abf62C) in the T. cellulolyticus genome. The expression of both genes was induced by cellulose. The results suggest that TcXyn30C may be involved in xylan removal in the hydrolysis of lignocellulose by the T. cellulolyticus cellulolytic system.IMPORTANCE Xylooligosaccharides (XOSs), which are composed of xylose units with a β-1,4 linkage, have recently gained interest as prebiotics in the food and feed industry. Apart from linear XOSs, branched XOSs decorated with a substituent such as methyl glucuronic acid and arabinose also have potential applications. Endoxylanase is a promising tool in producing XOSs from xylan. The structural variety of XOSs generated depends on the substrate specificity of the enzyme as well as the distribution of the substituents in xylan. Thus, the exploration of endoxylanases with novel specificities is expected to be useful in the provision of a series of XOSs. In this study, the endoxylanase TcXyn30C from Talaromyces cellulolyticus was characterized as a unique glycoside hydrolase belonging to the family GH30-7, which specifically releases 22-(4-O-methyl-α-d-glucuronosyl)-xylobiose from hardwood xylan. This study provides new insights into the production of linear and branched XOSs by GH30-7 endoxylanase.
  • Wada K; Fujii T; Akita H; Matsushika A
    Appl Biochem Biotechnol 190 (4) 1349 - 1359 2019/11 [Refereed]
     
    Construction of acid-tolerant strains of Saccharomyces cerevisiae is required for various bioproduction processes. We previously isolated the gene IoGAS1 from multiple stress-tolerant Issatchenkia orientalis as a gene conferring sulfuric acid resistance in S. cerevisiae, but its acid tolerance was only investigated using sulfuric acid. Here, we evaluated the growth and ethanol fermentation ability of the IoGAS1-expressing S. cerevisiae strain, B4-IoGAS1, by using various acidic reagents. B4-IoGAS1 exhibited faster growth than the control strain, B4-CON, when cultured aerobically with sulfuric, hydrochloric, formic, acetic, and lactic acids at pH below 2.4. However, the growth of B4-IoGAS1 was suppressed at pH above 2.48, irrespective of the type of acid reagents. Furthermore, B4-IoGAS1 exhibited higher performance of ethanol fermentation than B4-CON under 250 mM lactic acid condition at pH 2.37. These results demonstrate that IoGAS1 could facilitate the aerobic growth and anaerobic ethanol production under different acidic stressed conditions.
  • Toshihiro Suzuki; Tamotsu Hoshino; Akinori Matsushika
    Enzyme and Microbial Technology Elsevier {BV} 129 109359 - 109359 0141-0229 2019/10 [Refereed]
  • Akita H; Matsushika A; Kimura ZI
    MicrobiologyOpen Wiley 8 (9) e00843  2045-8827 2019/09 [Refereed]
  • Yusuke Nakamichi; Thierry Fouquet; Shotaro Ito; Akinori Matsushika; Hiroyuki Inoue
    Applied and environmental microbiology 85 (13) e00552-19  2019/07 [Refereed]
     
    In this study, we characterized the mode of action of reducing-end xylose-releasing exoxylanase (Rex), which belongs to the glycoside hydrolase family 30-7 (GH30-7). GH30-7 Rex, isolated from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), exists as a dimer. The purified Xyn30A released xylose from linear xylooligosaccharides (XOSs) 3 to 6 xylose units in length with similar kinetic constants. Hydrolysis of branched, borohydride-reduced, and p-nitrophenyl XOSs clarified that Xyn30A possesses a Rex activity. 1H nuclear magnetic resonance (1H NMR) analysis of xylotriose hydrolysate indicated that Xyn30A degraded XOSs via a retaining mechanism and without recognizing an anomeric structure at the reducing end. Hydrolysis of xylan by Xyn30A revealed that the enzyme continuously liberated both xylose and two types of acidic XOSs: 22-(4-O-methyl-α-d-glucuronyl)-xylotriose (MeGlcA2Xyl3) and 22-(MeGlcA)-xylobiose (MeGlcA2Xyl2). These acidic products were also detected during hydrolysis using a mixture of MeGlcA2Xyl n (n = 2 to 14) as the substrate. This indicates that Xyn30A can release MeGlcA2Xyl n (n = 2 and 3) in an exo manner. Comparison of subsites in Xyn30A and GH30-7 glucuronoxylanase using homology modeling suggested that the binding of the reducing-end residue at subsite +2 was partially prevented by a Gln residue conserved in GH30-7 Rex; additionally, the Arg residue at subsite -2b, which is conserved in glucuronoxylanase, was not found in Xyn30A. Our results lead us to propose that GH30-7 Rex plays a complementary role in hydrolysis of xylan by fungal cellulolytic systems.IMPORTANCE Endo- and exo-type xylanases depolymerize xylan and play crucial roles in the assimilation of xylan in bacteria and fungi. Exoxylanases release xylose from the reducing or nonreducing ends of xylooligosaccharides; this is generated by the activity of endoxylanases. β-Xylosidase, which hydrolyzes xylose residues on the nonreducing end of a substrate, is well studied. However, the function of reducing-end xylose-releasing exoxylanases (Rex), especially in fungal cellulolytic systems, remains unclear. This study revealed the mode of xylan hydrolysis by Rex from the cellulolytic fungus Talaromyces cellulolyticus (Xyn30A), which belongs to the glycoside hydrolase family 30-7 (GH30-7). A conserved residue related to Rex activity is found in the substrate-binding site of Xyn30A. These findings will enhance our understanding of the function of GH30-7 Rex in the cooperative hydrolysis of xylan by fungal enzymes.
  • Nakamichi Yusuke; Fouquet Thierry; Ito Shotaro; Watanabe Masahiro; Matsushika Akinori; Inoue Hiroyuki
    Journal of Biological Chemistry 294 (11) 4065 - 4078 2019/03 [Refereed]
  • 井上宏之; 中道優介; FOUQUET Thierry; 藤井達也; 渡邊真宏; 松鹿昭則
    バイオマス科学会議発表論文集(Web) 14 2423-8341 2019/01
  • Complete Genome Sequence of Ureibacillus thermosphaericus A1, a Thermophilic Bacillus Isolated from Compost
    MATSUSHIKA Akinori
    Genome Announcements 5 (38) e00910-17  2017/09 [Refereed]
  • Akinori Matsushika; Toshihiro Suzuki; Tetsuya Goshima; Tamotsu Hoshino
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING 124 (2) 164 - 170 1389-1723 2017/08 [Refereed]
  • Yosuke Kobayashi; Takehiko Sahara; Toshihiro Suzuki; Saori Kamachi; Akinori Matsushika; Tamotsu Hoshino; Satoru Ohgiya; Yoichi Kamagata; Kazuhiro E. Fujimori
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY 44 (6) 879 - 891 1367-5435 2017/06 [Refereed]
  • Akinori Matsushika; Kanako Negi; Toshihiro Suzuki; Tetsuya Goshima; Tamotsu Hoshino
    PLOS ONE 11 (9) 25  1932-6203 2016/09 [Refereed]
  • Akinori Matsushika; Tamotsu Hoshino
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY 42 (12) 1623 - 1631 1367-5435 2015/12 [Refereed]
  • Belisa B. de Sales; Bruna Scheid; Davi L. Goncalves; Marilia M. Knychala; Akinori Matsushika; Elba P. S. Bon; Boris U. Stambuk
    BIOTECHNOLOGY LETTERS 37 (10) 1973 - 1982 0141-5492 2015/10 [Refereed]
  • Hoshino, T; Tsuji, M; Yajima, Y; Yoshimune, K; Matsushika, A
    Fermentation Technology 4 (1) 114  2015/05 [Refereed]
  • Hiroyuki Inoue; Seitaro Hashimoto; Akinori Matsushika; Seiya Watanabe; Shigeki Sawayama
    JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY 41 (12) 1773 - 1781 1367-5435 2014/12 [Refereed]
  • Davi L. Goncalves; Akinori Matsushika; Belisa B. de Sales; Tetsuya Goshima; Elba P. S. Bon; Boris U. Stambuk
    ENZYME AND MICROBIAL TECHNOLOGY 63 13 - 20 0141-0229 2014/09 [Refereed]
  • Akinori Matsushika; Hiroyo Morikawa; Tetsuya Goshima; Tamotsu Hoshino
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY 174 (2) 623 - 631 0273-2289 2014/09 [Refereed]
  • Suzuki T; Hoshino T; Matsushika A
    Genome announcements 2 (4) e00733-14  2014/07 [Refereed]
  • Tatsuya Fujii; Katsuji Murakami; Takashi Endo; Shinji Fujimoto; Tomoaki Minowa; Akinori Matsushika; Shinichi Yano; Shigeki Sawayama
    BIOPROCESS AND BIOSYSTEMS ENGINEERING 37 (4) 749 - 754 1615-7591 2014/04 [Refereed]
  • Akinori Matsushika; Tetsuya Goshima; Tamotsu Hoshino
    MICROBIAL CELL FACTORIES 13 (1) 18  1475-2859 2014/01 [Refereed]
  • Tetsuya Goshima; Kanako Negi; Masaharu Tsuji; Hiroyuki Inoue; Shinichi Yano; Tamotsu Hoshino; Akinori Matsushika
    Journal of Bioscience and Bioengineering 116 (5) 551 - 554 1389-1723 2013/11 [Refereed]
  • Masaharu Tsuji; Tetsuya Goshima; Akinori Matsushika; Sakae Kudoh; Tamotsu Hoshino
    CRYOBIOLOGY 67 (2) 241 - 243 0011-2240 2013/10 [Refereed]
  • Akinori Matsushika; Atsushi Nagashima; Tetsuya Goshima; Tamotsu Hoshino
    PLOS ONE 8 (7) 11  1932-6203 2013/07 [Refereed]
  • Tatsuya Fujii; Akinori Matsushika; Tetsuya Goshima; Katsuji Murakami; Shinichi Yano
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 77 (7) 1579 - 1582 0916-8451 2013/07 [Refereed]
  • Tetsuya Goshima; Masaharu Tsuji; Hiroyuki Inoue; Shinichi Yano; Tamotsu Hoshino; Akinori Matsushika
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 77 (7) 1505 - 1510 0916-8451 2013/07 [Refereed]
  • Akinori Matsushika; Shigeki Sawayama
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY 169 (3) 712 - 721 0273-2289 2013/02 [Refereed]
  • Akinori Matsushika; Shigeki Sawayama
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY 168 (8) 2094 - 2104 0273-2289 2012/12 [Refereed]
  • Akinori Matsushika; Tetsuya Goshima; Tatsuya Fujii; Hiroyuki Inoue; Shigeki Sawayama; Shinichi Yano
    ENZYME AND MICROBIAL TECHNOLOGY 51 (1) 16 - 25 0141-0229 2012/06 [Refereed]
  • Emiko Oguri; Osamu Takimura; Akinori Matsushika; Hiroyuki Inoue; Shigeki Sawayama
    FOOD SCIENCE AND TECHNOLOGY RESEARCH 17 (4) 267 - 272 1344-6606 2011/07 [Refereed]
  • Tatsuya Fujii; Guoce Yu; Akinori Matsushika; Asami Kurita; Shinichi Yano; Katsuji Murakami; Shigeki Sawayama
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 75 (6) 1140 - 1146 0916-8451 2011/06 [Refereed]
  • Akinori Matsushika; Shigeki Sawayama
    ENZYME AND MICROBIAL TECHNOLOGY 48 (6-7) 466 - 471 0141-0229 2011/05 [Refereed]
  • Akinori Matsushika; Shigeki Sawayama
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY 162 (7) 1952 - 1960 0273-2289 2010/11 [Refereed]
  • Akinori Matsushika; Emiko Oguri; Shigeki Sawayama
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING 110 (1) 102 - 105 1389-1723 2010/07 [Refereed]
  • Akinori Matsushika; Hiroyuki Inoue; Tsutomu Kodaki; Shigeki Sawayama
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 84 (1) 37 - 53 0175-7598 2009/08 [Refereed][Invited]
  • Akinori Matsushika; Hiroyuki Inoue; Seiya Watanabe; Tsutomu Kodaki; Keisuke Makino; Shigeki Sawayama
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY 75 (11) 3818 - 3822 0099-2240 2009/06 [Refereed]
  • Akinori Matsushika; Hiroyuki Inoue; Katsuji Murakami; Osamu Takimura; Shigeki Sawayama
    BIORESOURCE TECHNOLOGY 100 (8) 2392 - 2398 0960-8524 2009/04 [Refereed]
  • Akinori Matsushika; Seiya Watanabe; Tsutomu Kodaki; Keisuke Makino; Hiroyuki Inoue; Katsuji Murakami; Osamu Takimura; Shigeki Sawayama
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 81 (2) 243 - 255 0175-7598 2008/11 [Refereed]
  • Akinori Matsushika; Shigeki Sawayama
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING 106 (3) 306 - 309 1389-1723 2008/09 [Refereed]
  • 藤本真司; 松鹿昭則; 秀野晃大; 柳田高志; 佐賀清崇; 井上宏之; 美濃輪智朗
    日本エネルギー学会大会講演要旨集 17th 2008/08
  • Akinori Matsushika; Seiya Watanabe; Tsutomu Kodaki; Keisuke Makino; Shigeki Sawayama
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING 105 (3) 296 - 299 1389-1723 2008/03 [Refereed]
  • Nobuhiro Azuma; Kyoko Kanamaru; Akinori Matsushika; Takafumi Yamashino; Takeshi Mizuno; Masashi Kato; Tetsuo Kobayashi
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 71 (10) 2493 - 2502 0916-8451 2007/10 [Refereed]
  • Akinori Matsushika; Masakazu Kawamura; Yuko Nakamura; Takahiko Kato; Masaya Murakami; Takafumi Yamashino; Takeshi Mizuno
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 71 (2) 535 - 544 0916-8451 2007/02 [Refereed]
  • Akinori Matsushika; Masaya Murakami; Shogo Ito; Norihito Nakamichi; Takafumi Yamashino; Takeshi Mizuno
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 71 (2) 527 - 534 0916-8451 2007/02 [Refereed]
  • Shogo Ito; Norihito Nakamichi; Takatoshi Kiba; Akinori Matsushika; Toru Fujimori; Takafami Yamashino; Takeshi Mizuno
    PLANT AND CELL PHYSIOLOGY 48 S151 - S151 0032-0781 2007 [Refereed]
  • Masakazu Kawamura; Akinori Matsushika; Takafumi Yamashino; Takeshi Mizuno
    PLANT AND CELL PHYSIOLOGY 48 S188 - S188 0032-0781 2007 [Refereed]
  • A Matsushika; M Kawamura; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 47 S66 - S66 0032-0781 2006 [Refereed]
  • S Ito; N Nakamichi; A Matsushika; T Fujimori; T Yamashino; T Mizuno
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 69 (2) 382 - 390 0916-8451 2005/02 [Refereed]
  • M Murakami; A Matsushika; M Ashikari; T Yamashino; T Mizuno
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 69 (2) 410 - 414 0916-8451 2005/02 [Refereed]
  • S Ito; N Norihito; A Matsushika; T Fujimori; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 69 (2) 382 - 390 0032-0781 2005/02 [Refereed]
  • A Matsushika; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 46 S98 - S98 0032-0781 2005 [Refereed]
  • S Ito; A Matsushika; H Yamada; S Sato; T Kato; S Tabata; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 44 (11) 1237 - 1245 0032-0781 2003/11 [Refereed]
  • T Yamashino; A Matsushika; T Fujimori; S Sato; T Kato; S Tabata; T Mizuno
    PLANT AND CELL PHYSIOLOGY 44 (6) 619 - 629 0032-0781 2003/06 [Refereed]
  • N Nakamichi; A Matsushika; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 44 (3) 360 - 365 0032-0781 2003/03 [Refereed]
  • A Matsushika; S Ito; T Yamashino; T Kato; S Sato; S Tabata; T Mizuno
    PLANT AND CELL PHYSIOLOGY 44 S34 - S34 0032-0781 2003 [Refereed]
  • A Matsushika; S Makino; M Kojima; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 43 (1) 118 - 122 0032-0781 2002/01 [Refereed]
  • A Matsushika; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 43 S76 - S76 0032-0781 2002 [Refereed]
  • S Makino; A Matsushika; M Kojima; T Yamashino; T Mizuno
    PLANT AND CELL PHYSIOLOGY 43 (1) 58 - 69 0032-0781 2002/01 [Refereed]
  • T Mizuno; A Matsushika; S Makino; M Kojima; T Kiba; A Imamura; N Hanaki; A Nakamura; T Suzuki; M Taniguchi; C Ueguchi; T Sugiyama; T Mizuno
    PLANT AND CELL PHYSIOLOGY 43 S22 - S22 0032-0781 2002/01 [Refereed]
  • S Makino; A Matsushika; M Kojima; Y Oda; T Mizuno
    PLANT AND CELL PHYSIOLOGY 42 (3) 334 - 339 0032-0781 2001/03 [Refereed]
  • A Matsushika; S Makino; M Kojima; T Mizuno
    PLANT AND CELL PHYSIOLOGY 41 (9) 1002 - 1012 0032-0781 2000/09 [Refereed]
  • A Matsushika; T Mizuno
    JOURNAL OF BIOCHEMISTRY 127 (5) 855 - 860 0021-924X 2000/05 [Refereed]
  • S Takeda; A Matsushika; T Mizuno
    JOURNAL OF BIOCHEMISTRY 126 (2) 354 - 360 0021-924X 1999/08 [Refereed]
  • A Matsushika; T Mizuno
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY 62 (11) 2236 - 2238 0916-8451 1998/11 [Refereed]
  • A Matsushika; T Mizuno
    JOURNAL OF BIOCHEMISTRY 124 (2) 440 - 445 0021-924X 1998/08 [Refereed]
  • A Matsushika; T Mizuno
    JOURNAL OF BACTERIOLOGY 180 (15) 3973 - 3977 0021-9193 1998/08 [Refereed]

MISC

Books and other publications

  • Advances in Industrial Applications of Yeasts, Koji-molds, and Lactic Acid Bacteria
    MATSUSHIKA Akinori (Contributor木質系バイオマスからの有用物質生産に向けた酵母の育種開発)シーエムシー出版 2018/01
  • Microbial Stress Tolerance for Biofuels
    Akinori Matsushika (Joint workImproving biomass sugar utilization by engineered Saccharomyces csrevisiae)Springer 2012/01
  • Bioethanol Communication
    松鹿昭則 (ContributorBreeding of novel xylose fermentable flocculent yeast)JARUS 2009/01
  • Ethanol production from lignocellulosic biomass using microorganisms
    村上克治; 松鹿昭則; 澤山茂樹 (Joint work)燃料電池 2008/04
  • About ethanol production technology from lignocellulosic biomass
    澤山茂樹; 矢野伸一; 松鹿昭則; 井上宏之 (Joint work)Measuring Instruments 2007/08

Lectures, oral presentations, etc.

  • Isolation of a gene involved in acid stress tolerance in the yeast Hanseniaspora uvarum  [Not invited]
    Ayumu Shigemoto; Daisuke Moriguchi; Akinori Matsushika
    第76回 日本生物工学会大会  2024/09
  • Daisuke Moriguchi; Hiroto Oonishi; Ayumu Shigemoto; Akinori Matsushika
    Japan Society of Agricultural Chemistry 2024 Annual Meeting  2024/03
  • Daisuke Moriguti; Akinori Matsushika
    11th KINDAI UNIVERSITY GRADUATE SCHOOL SUMMIT  2023/08
  • Fundamental technology development for bioprocesses using biocatalysts  [Invited]
    Akinori Matsushika
    近畿大学工学部 研究公開フォーラム 2022  2022/10
  • 好熱性ホモ酢酸菌Moorella thermoaceticaの代謝改変エタノール生産において可逆性ヒドロゲナーゼ活性が細胞内酸化還元バランスを補正する  [Not invited]
    加藤淳也; 小林駿介; 和田圭介; 竹村海生; 加藤節; 藤井達也; 岩崎祐樹; 青井議輝; 森田友岳; 松鹿昭則; 村上克治; 中島田豊
    第74回日本生物工学会大会  2022/10
  • 嫌気呼吸を利用した好熱性ホモ酢酸菌Moorella thermoacetica代謝改変株によるH2/CO2からのアセトン生産性の増強
    竹村海生; 加藤淳也; 加藤節; 藤井達也; 和田圭介; 岩崎祐樹; 青井議輝; 松鹿昭則; 森田友岳; 村上克治; 中島田豊
    日本農芸化学会2022年度大会  2022/03
  • 好熱性ホモ酢酸菌Moorella thermoacetica代謝改変によるアセトンの高温ガス発酵
    加藤淳也; 竹村海生; 加藤節; 藤井達也; 和田圭介; 岩崎祐樹; 青井議輝; 森田友岳; 松鹿昭則; 村上克治; 中島田豊
    第73回日本生物工学会大会  2021/10
  • Molecular breeding of yeast for the efficient production of fermented products from lignocellulosic biomass  [Invited]
    Akinori Matsushika
    第96回広島大学バイオマスイブニングセミナー  2021/10
  • Moorella thermoaceticaの H2/CO2培養において嫌気呼吸が与える増殖と物質生産への効果
    小林駿介; 加藤淳也; 竹村海生; 加藤節; 青井議輝; 中島田豊; 和田圭介; 松鹿昭則; 村上克治
    日本生物工学会西日本支部大会2020(第5回講演会)  2020/11
  • 好熱性ホモ酢酸菌 Moorella thermoacetica 遺伝子工学ツール拡張に向けた試み
    加藤淳也; 小林駿介; 加藤節; 藤井達也; 和田圭介; 岩崎祐樹; 青井議輝; 松鹿昭則; 村上克治; 中島田豊
    日本生物工学会西日本支部大会2020(第5回講演会)  2020/11
  • 好熱性ホモ酢酸菌Moorella thermoacetica のエタノール生産株におけるH2による増殖阻害の機構解明
    小林駿介; 加藤淳也; 和田圭介; 竹村海生; 加藤節; 青井議輝; 松鹿昭則; 村上克治; 中島田豊
    化学工学会第51回秋季大会  2020/09
  • 遺伝子組換えMoorella thermoacetica による合成ガスからのエタノール生産高速化
    竹村海生; 加藤淳也; 加藤節; 藤井達也; 和田圭介; 青井議輝; 松鹿昭則; 村上 克治; 中島田豊
    日本農芸化学会2020年度中四国支部大会(第57回講演会)  2020/09
  • バイオ変換グループの保有技術:微生物および酵素の改良技術
    松鹿昭則
    令和元年度 産総研 材料・化学シンポジウム「21世紀の化学反応とプロセス」  2020/02
  • Talaromyces cellulolyticus由来グルクロノキシラナーゼの機能解析
    中道優介; Fouquet Nicolas Jean Thierry; 伊藤祥太郎; 渡邊真宏; 松鹿昭則; 井上宏之
    第71回日本生物工学会大会  2019/09
  • 好熱性ホモ酢酸菌Moorella thermoacetica代謝改変株を用いたエタノール生産増強に向けた培養工学的検討
    加藤淳也; 竹村海正; 岩崎祐樹; 加藤節; 青井議輝; 和田圭介; 村上克治; 松鹿昭則; 中島田豊
    第71回日本生物工学会大会  2019/09
  • 糖質加水分解酵素ファミリー30-7に属するキシラナーゼの機能解析
    井上宏之; 中道優介; Fouquet Nicolas Jean Thierry; 伊藤祥太郎; 渡邊真宏; 松鹿昭則
    日本応用糖質科学会2019年度大会  2019/09
  • Burkholderia multivorans CCA53株の色素分解への応用
    秋田紘長; 和田圭介; 藤井達也; 松鹿昭則
    環境バイオテクノロジー学会2019年度大会  2019/06
  • バイオテクノロジー(遺伝子解析、インフォマティクス、タンパク質構造解析)
    松鹿昭則
    技術交流会  2019/03
  • 産総研中国センターにおける酵素開発の取り組み
    渡邊真宏; 井上宏之; 中道優介; 松鹿昭則
    産総研中国センター国際シンポジウム  2019/02
  • 糸状菌由来の糖化関連酵素ライブラリーの構築と利用による植物バイオマスの限定分解技術の開発
    井上宏之; 中道優介; Fouquet Nicolas Jean Thierry; 藤井達也; 松鹿昭則
    第14回バイオマス科学会議  2019/01
  • Kluyveromyces marxianus DMB1株由来のNADPH依存性アルデヒド還元酵素の機能解析
    秋田紘長; 星野保; 松鹿昭則
    酵素工学研究会第80回講演会  2018/11
  • Talaromyces cellulolyticus由来新規GH30エンドキシラナーゼの同定
    中道優介; 藤井達也; 松鹿昭則; 井上宏之
    第70回日本生物工学会大会  2018/09
  • ファミリーGH30に属するエンド型キシラナーゼの同定
    中道優介; Fouquet Nicolas Jean Thierry; 藤井達也; 渡邊真宏; 松鹿昭則; 井上宏之
    セルラーゼ研究会 第32回大会  2018/07
  • Burkholderia multivorans CCA53株の単離とリグニン分解能の解析
    秋田紘長; 木村善一郎; 星野保; 松鹿昭則
    環境バイオテクノロジー学会2018年度大会  2018/06
  • バイオエタノール  [Invited]
    松鹿 昭則
    シンポジウム「講習会:基礎からわかるバイオ燃料」  2018/03
  • バイオマスから機能化学品をつくるための微生物
    松鹿昭則
    平成27年度テクノブリッジフェアin北海道  2017/07
  • バイオマスからの有用物質発酵生産に向けた酵母の育種開発  [Invited]
    松鹿 昭則
    第3回関西バイオ医療研究会  2017/06
  • Identification of a novel Issatchenkia orientalis GPI-anchored protein involved in tolerance to acid and salt stress
    松鹿昭則; 鈴木俊宏; 五島徹也; 星野保
    39th Symposium on Biotechnology for Fuels and Chemicals  2017/05
  • バイオマスからの有用物質生産に向けた微生物育種開発
    松鹿昭則
    平成28年度 (国研)産総研中国センター材料・化学領域機能化学研究部門/ 近畿大学次世代基盤技術研究所 先端化学生命工学研究センター[aCYBER] ジョイントミーティング  2017/03
  • 酵母由来GPIアンカー型グルカノシルトランスフェラーゼによる耐酸性・耐塩性の強化
    松鹿昭則; 鈴木俊宏; 五島徹也; 星野保
    日本農芸化学会2017年度大会  2017/03
  • バイオ燃料製造の有用要素技術開発事業/有用微生物を用いた発酵生産技術の研究開発/C5C6糖同時発酵微生物の開発
    松鹿昭則
    NEDO有用要素技術開発事業 第7回研究開発推進委員会  2017/01
  • バイオマス利活用に向けたバイオ変換技術論  [Invited]
    松鹿 昭則
    グリーンケミストリー特別講演会  2017
  • バイオマスからの効率的発酵生産に向けた酵母の育種開発
    松鹿昭則
    技術交流会  2016/12
  • 酵母の酸耐性・塩耐性に関与する新規GPIアンカー型タンパク質の機能解析
    松鹿昭則; 鈴木俊宏; 根冝香奈子; 五島徹也; 星野保
    第39回日本分子生物学会年会  2016/11
  • バイオ燃料製造の有用要素技術開発事業/有用微生物を用いた発酵生産技術の研究開発/C5C6糖同時発酵微生物の開発
    松鹿昭則
    NEDO有用要素技術開発事業 第6回研究開発推進委員会  2016/11
  • 酵母における酸耐性・塩耐性付与遺伝子の解析と分子育種による耐性強化
    松鹿昭則; 鈴木俊宏; 根冝香奈子; 橋本智代; 五島徹也; 星野保
    第68回日本生物工学会大会  2016/09
  • Kluyveromyces marxianusにおけるキシリトール脱水素酵素の補酵素特異性改変による効果
    鈴木俊宏; 星野保; 松鹿昭則
    第68回日本生物工学会大会  2016/09
  • ペントースリン酸経路遺伝子発現の最適化によるC5C6糖同時発酵酵母のethanol生産性の向上
    小林洋介; 藤森一浩; 佐原健彦; 鈴木俊宏; 蒲池沙織; 松鹿昭則; 星野保; 扇谷悟; 鎌形洋一
    第68回日本生物工学会大会  2016/09
  • タンパク質工学によるTalaromyces cellulolyticus由来セロビオハイドロラーゼの耐熱化
    蒲池沙織; 井上宏之; 松鹿昭則; 星野保; 石川一彦
    第68回日本生物工学会大会  2016/09
  • Metabolite analysis using Kluyveromyces marxianus during xylose fermentation
    鈴木俊宏; 星野保; 松鹿昭則
    14th International Congress on Yeasts (ICY14)  2016/09
  • Ethanol production from xylose by metabolically engineered yeast strains
    松鹿昭則
    Seminar for Dr. Elvi Restiawaty, S.T., June 9, 2016  2016/06
  • バイオ燃料製造の有用要素技術開発事業/有用微生物を用いた発酵生産技術の研究開発/C5C6糖同時発酵微生物の開発
    松鹿昭則
    NEDO有用要素技術開発事業 第5回研究開発推進委員会  2016/03
  • 五炭糖発酵性改良を目指した 酵母の分子育種
    松鹿昭則
    産総研・理研交流会  2016/02
  • HAP4遺伝子を破壊したキシロース資化性酵母による高効率エタノール生産
    松鹿昭則
    産総研中国センターシンポジウム -材料・化学研究が切り拓く産業競争力強化への道筋-  2016/01
  • 酵母Issatchenkia orientalisにおける耐酸性・耐塩性遺伝子の単離と解析
    松鹿昭則; 根冝香奈子; 鈴木俊宏; 五島徹也; 星野保
    日本農芸化学会2016年度大会  2015/10
  • セルロース系バイオエタノール生産実用酵母Saccharomyces cerevisiae IR-2におけるペントースリン酸経路の最適化と耐熱化
    小林洋介; 藤森一浩; 佐原健彦; 鈴木俊宏; 蒲池沙織; 松鹿昭則; 星野保; 扇谷悟; 鎌形洋一
    日本農芸化学会2016年度大会  2015/10
  • キシロース資化性酵母を用いたエタノール生産に対するHAP4遺伝子破壊の効果
    松鹿昭則; 鈴木俊宏; 星野保
    第67回日本生物工学会大会  2015/10
  • Kluyveromyces marxianus由来キシロース代謝遺伝子の過剰発現による高温条件下でのキシロース発酵
    鈴木俊宏; 星野保; 松鹿昭則
    第67回日本生物工学会大会  2015/10
  • Ethanol production from xylose by metabolically engineered yeast strains
    松鹿昭則
    Seminar for Dr. Todd Pray, ABPDU, September 9, 2015  2015/09
  • Kluyveromyces marxianusのキシロース代謝遺伝子の単離と評価
    鈴木俊宏; 星野保; 松鹿昭則
    酵母遺伝学フォーラム第48回研究報告会  2015/09
  • 木質系バイオマスからのエタノール生産のためのキシロース発酵性・耐熱性酵母の分子育種
    松鹿昭則
    機能化学研究部門 平成27年度研究交流会  2015/07
  • 農林水産省におけるバイオマス利用の研究開発について  [Invited]
    松鹿 昭則
    平成26年度 事業化を加速する産学連携支援事業 「バイオエタノールとバイオエネルギーの将来を考える」  2014/10
  • 耐熱性酵母Kluyveromyces marxianus DMB1のキシロース代謝時のメタボローム解析
    鈴木俊宏; 星野保; 松鹿昭則
    第66回日本生物工学会大会  2014/09
  • Improvement of saccharification and fermentation by removal of endogenious chemicals from pretreatment lignocellulosic biomass
    星野保; 辻雅晴; 松鹿昭則
    36th Symposium on Biotechnology for Fuels and Chemicals  2014/04
  • セルロース系エタノール革新的生産システム開発事業/早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発/酵素糖化・発酵技術の研究開発
    星野保; 松鹿昭則; 藤井達也; 小瀧努
    NEDOセルロース革新事業 平成25年度第2回研究開発推進委員会  2014/01
  • 網羅的代謝変動解析によるキシロース資化性酵母の発酵特性の解明
    松鹿昭則; 星野保
    第19回E&Eフォーラム(環境・エネルギー分野研究交流会)  2013/12
  • CE-TOFMS法を用いた炭素源変化によるキシロース発酵性実用酵母のメタボローム解析
    松鹿昭則
    第2回バイオマスリファイナリーシンポジウム(研究成果報告会)  2013/11
  • 五炭糖発酵性改良を目指した酵母の分子育種
    松鹿昭則
    第65回日本生物工学会大会  2013/09
  • セルロース系エタノール革新的生産システム開発事業/早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発/酵素糖化・発酵技術の研究開発
    星野保; 松鹿昭則; 藤井達也; 小瀧努
    NEDOセルロース革新事業 平成25年度第1回研究開発推進委員会  2013/08
  • Metabolome analysis of recombinant industrial Saccharomyces cerevisiae with xylose-fermenting ability
    松鹿昭則; 五島徹也; 星野保
    2013 SIMB Annual Meeting  2013/08
  • Development of cellulase-producing fungi and yeast suitable for biomass conversion
    井上宏之; 松鹿昭則
    Japan - U.S. Collaboration on Clean Energy Technology Workshop 2012  2013/03
  • 木質系バイオマスからの物質生産のためのキシロース発酵性・耐熱性酵母の分子育種
    五島徹也; 根冝香奈子; 松鹿昭則
    第1回バイオマスリファイナリーシンポジウム(研究成果報告会)  2013/02
  • 木質系バイオマス由来キシロース発酵性改良に向けた凝集性実用酵母の分子育種開発
    松鹿昭則; 五島徹也; 星野保
    第1回バイオマスリファイナリーシンポジウム(研究成果報告会)  2013/02
  • Ethanol production by recombinant flocculent Saccharomyces cerevisiae that can effectively co-ferment glucose and xylose
    松鹿昭則
    Seminar  2013/01
  • セルロース系エタノール革新的生産システム開発事業/早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発/酵素糖化・発酵技術の研究開発
    星野保; 松鹿昭則; 藤井達也; 小瀧努
    NEDOセルロース革新事業推 平成24年度第2回研究開発推進委員会  2012/12
  • バイオエタノール生産用キシロース発酵性酵母の分子育種研究
    松鹿昭則
    技術交流会  2012/12
  • 接合を利用したSaccharomyces cerevisiaeのキシロース代謝能向上
    橋本征太郎; 井上宏之; 松鹿昭則; 澤山茂樹
    第19回日本生物工学会九州支部大分大会  2012/12
  • 分子育種による耐熱性酵母Kluyveromyces marxianusのキシロース発酵能の付与
    五島徹也; 松鹿昭則; 井上宏之; 矢野伸一; 星野保
    第64回日本生物工学会大会  2012/10
  • Ethanol production by recombinant flocculent Saccharomyces cerevisiae that can effectively co-ferment glucose and xylose
    松鹿昭則; 澤山茂樹; 星野保
    2012 Pacific Rim Summit  2012/10
  • セルロース系エタノール革新的生産システム開発事業/早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発/酵素糖化・発酵技術の基盤研究
    星野保; 松鹿昭則; 藤井達也; 小瀧努
    NEDOセルロース革新事業 平成24年度第1回研究開発推進委員会  2012/07
  • 補酵素特異性改変酵母によるキシロースからのエタノール生産
    松鹿昭則; 澤山茂樹; 小瀧努; 星野保
    環境化学技術研究部門 平成24年度研究交流会  2012/06
  • 耐熱性酵母Kluyveromyces marxianus DMB1のエタノール発酵性
    五島徹也; 井上宏之; 松鹿昭則; 矢野伸一
    日本農芸化学会2012年度大会  2012/03
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    NREL Seminar  2012/02
  • バイオマス由来キシロース発酵性改良に向けた酵母の育種開発  [Invited]
    松鹿 昭則
    広島大学 酵母細胞プロジェクト研究センター 春期シンポジウム  2011/03
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    NREL and AIST meeting  2010/12
  • バイオエタノール生産用キシロース発酵性酵母の分子育種
    松鹿昭則
    第5回広島大学・産総研バイオマスオープンセミナー  2010/11
  • キシロース発酵性を付与した凝集性実用酵母のオミックス解析
    松鹿昭則; 村上克治; 永嶋淳; 澤山茂樹
    第62回日本生物工学会大会  2010/10
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    NREL and AIST meeting  2010/10
  • キシロース発酵性凝集性酵母のメタボローム解析
    松鹿昭則; 永嶋淳; 澤山茂樹
    酵母遺伝学フォーラム第43回研究報告会  2010/09
  • キシロオリゴ糖の資化性を付与した組み換え酵母によるエタノール生産
    藤井達也; 松鹿昭則; 栗田麻未; 矢野伸一; 村上克治; 澤山茂樹
    日本農芸化学会大会2010年度大会  2010/03
  • パルプ産業用機械技術と同時発酵によるバイオエタノール生産システム/ワンバッチ式バイオエタノール製造技術の研究開発 -糖化・発酵微生物-
    澤山茂樹; 矢野伸一; 井上宏之; 松鹿昭則
    NEDO先導技術開発推進委員会  2010/03
  • Development of recombinant xylose-fermentable yeast suitable for biomass conversion -The progress of AIST-NREL collaboration-
    松鹿昭則
    NREL Seminar  2010/02
  • 分子育種により開発したキシロース発酵性酵母によるエタノール生産
    松鹿昭則
    第6回E&Eフォーラム(環境・エネルギー分野研究交流会)  2010/02
  • キシロース発酵性を付与した凝集性酵母の遺伝子発現解析
    松鹿昭則; 井上宏之; 澤山茂樹
    第32回日本分子生物学会年会  2009/12
  • 「メカノケミカルパルピング前処理によるエタノール生産技術開発」発酵技術の進捗について
    松鹿昭則
    バイオマスエネルギー先導技術開発 加速的先導技術に関するワークショップ  2009/12
  • セルロース系エタノール革新的生産システム開発事業/バイオマスエタノール一貫生産システムに関する研究開発/早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発
    坂西欣也; 澤山茂樹; 遠藤貴士; 矢野伸一; 松鹿昭則
    第1回NEDO革新事業(エタノール)推進委員会  2009/10
  • Expression of the Trichoderma reesei β-xylosidase gene in Saccharomyces cerevisiae
    Guoce Yu; 矢野伸一; 井上宏之; 松鹿昭則; Xu Fang; 澤山茂樹
    International Conference on Biorefinery (IBC 09)  2009/10
  • 改変型酵素を導入したキシロース発酵性実用酵母によるエタノール生産
    松鹿昭則; 井上宏之; 渡邉誠也; 小瀧努; 牧野圭祐; 澤山茂樹
    第61回日本生物工学会大会  2009/09
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    ブラジル・リオデジャネイロ連邦大学(UFRJ)・サンタカタリーナ連邦大学(UFSC)とのワークショップ  2009/08
  • 出芽酵母におけるタンパク質の複数同時発現の応用
    菅野陽平; 合田孝子; 松鹿昭則; 澤山茂樹; 扇谷悟
    酵母遺伝学フォーラム第42回研究報告会  2009/07
  • Bioethanol production from nano-fibrillated lignocellulosic biomass
    井上宏之; 松鹿昭則; 澤山茂樹
    Society for Industrial Microbiology 2009 Annual Meeting and Exhibition  2009/07
  • 新規キシロース発酵性酵母の分子育種
    松鹿昭則
    BTRC研究発表会  2009/06
  • Metabolic engineering of flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene for ethanol production from xylose
    松鹿昭則; 井上宏之; 渡邉誠也; 小瀧努; 牧野圭祐; 澤山茂樹
    31th Symposium on Biotechnology for Fuels and Chemicals  2009/05
  • 新規キシロース発酵性賦与凝集性酵母によるエタノール生産
    松鹿昭則; 井上宏之; 村上克治; 澤山茂樹
    日本農芸化学会大会2009年度大会  2009/03
  • 新規キシロース発酵性酵母の分子育種 - バイオマス由来C5糖発酵性改良に向けた開発の現状と展望、戦略 -  [Invited]
    松鹿昭則、井上宏之、澤山茂樹
    アルコール・バイオマス研究会講演会  2009/02
  • 新規キシロース発酵性凝集性酵母の育種  [Invited]
    松鹿 昭則
    ソフトセルロース利活用技術確立事業 第2回モデル地区概要発表会  2009/01
  • バイオマスエネルギー高効率転換技術開発/バイオマスエネルギー先導技術研究開発/ワンバッチ式バイオエタノール製造技術の研究開発
    坂西欣也; 澤山茂樹; 遠藤貴士; 矢野伸一; 村上克治; 滝村修; 井上宏之; 寺本好邦; 松鹿昭則; 牧野圭祐; 小瀧努; Pack Seung Pil; 渡邊誠也
    平成19年度「バイオマスエネルギー高効率転換技術開発」成果報告会  2008/12
  • パルプ産業用機械技術と同時発酵によるバイオエタノール生産システム/ワンバッチ式バイオエタノール製造技術の研究開発
    澤山茂樹; 矢野伸一; 井上宏之; 松鹿昭則
    第4回NEDO先導研究(エタノール)推進委員会  2008/12
  • キシロース発酵性を付与した凝集性酵母によるエタノール生産
    松鹿昭則; 井上宏之; 村上克治; 澤山茂樹
    第31回日本分子生物学会年会・第81回日本生化学会大会合同大会  2008/12
  • タンパク質工学を用いたキシロース発酵性サッカロミセス酵母の育種
    渡邉誠也; 小瀧努; 牧野圭祐; 松鹿昭則; 澤山茂樹
    第60回日本生物工学会大会  2008/08
  • キシロースからのエタノール生産に適した実用酵母宿主株の発酵特性検討
    井上宏之; 松鹿昭則; 澤山茂樹
    第60回日本生物工学会大会  2008/08
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    INET – BTRC Biofuels Workshop  2008/08
  • 非硫酸前処理によるバイオエタノール製造プロセスの高効率化と経済性の検討
    藤本真司; 松鹿昭則; 秀野晃大; 柳田高志; 佐賀清崇; 井上宏之; 美濃輪智朗
    第17回日本エネルギー学会大会  2008/08
  • タンパク質工学的手法により改変したキシリトール脱水素酵素遺伝子導入酵母によるバイオエタノール生産
    松鹿昭則; 渡邉誠也; 小瀧努; 牧野圭祐; 澤山茂樹
    産総研・酒総研ジョイントシンポジウム - 醸造とバイオ燃料  2008/06
  • Bioethanol production from xylose using recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase
    松鹿昭則; 渡邉誠也; 小瀧努; 牧野圭祐; 澤山茂樹
    30th Symposium on Biotechnology for Fuels and Chemicals  2008/05
  • Engineering of Saccharomyces cerevisiae for efficient bioethanol production from xylose
    松鹿昭則
    中国・清華大学核エネルギー・新エネルギー研究所(INET)とのワークショップ  2008/05
  • ポリメラーゼ校正機能欠損酵母株を用いたバイオエタノール生産技術
    小栗恵美子; 松鹿昭則; 村上克治; 澤山茂樹
    日本農芸化学会大会2008年度大会  2008/03
  • 改変型キシロース代謝遺伝子導入酵母によるエタノール生産
    松鹿昭則; 渡邉誠也; 小瀧努; 牧野圭祐; 井上宏之; 村上克治; 澤山茂樹
    日本農芸化学会大会2008年度大会  2008/03
  • ワンバッチ式バイオエタノール製造技術(発酵)の研究開発
    松鹿昭則
    第3回NEDO先導研究(エタノール)推進委員会  2008/01
  • バイオマスエネルギー高効率転換技術開発/バイオマスエネルギー先導技術研究開発/ワンバッチ式バイオエタノール製造技術の研究開発
    坂西欣也; 澤山茂樹; 遠藤貴士; 矢野伸一; 村上克治; 滝村修; 井上宏之; 松鹿昭則; 寺本好邦; 牧野圭祐; 小瀧努; 渡邊誠也
    平成18年度「バイオマスエネルギー高効率転換技術開発」成果報告会  2007/10
  • 二酸化炭素とEDTA鉄による微好気性アンモニア酸化反応
    澤山茂樹; 松鹿昭則; 井上宏之
    第59回日本生物工学会大会  2007/09
  • 改変型酵素を導入した酵母によるキシロースからのエタノール生産
    松鹿昭則; 渡邉誠也; 小瀧努; 牧野圭祐; 井上宏之; 村上克治; 澤山茂樹
    第59回日本生物工学会大会  2007/09
  • ワンバッチ式バイオエタノール製造技術(発酵)の研究開発
    松鹿昭則
    第2回NEDO先導研究(エタノール)推進委員会  2007/08
  • Effect of supplemental hemicellulase on enzymatic hydrolysis and ethanol fermentation of softwood pretreated by ball milling
    井上宏之; 矢野伸一; 滝村修; 村上克治; 松鹿昭則; 塚原建一郎; 澤山茂樹
    29th Symposium on Biotechnology for Fuels and Chemicals  2007/04
  • シロイヌナズナにおける光誘導性、時計関連遺伝子PRR9のプロ モーター解析とタンパク質解析: PRR9タンパク質の存在量も概日 変動し、暗条件で速やかに分解さ れる
    伊藤照悟; 中道範人; 木羽隆敏; 松鹿昭則; 藤森徹; 山篠貴史; 水野猛
    植物生理学会2007年度年会および第48回シンポジウム  2007/03
  • シロイヌナズナの時計関連 PRR ファミリー因子の機能解析
    河村正和; 松鹿昭則; 山篠貴史; 水野猛
    植物生理学会2007年度年会および第48回シンポジウム  2007/03
  • 糸状菌Aspergillus nidulansにおけるHis-Aspリン酸リレーネットワークのin vitro解析
    東信宏; 金丸京子; 松鹿昭則; 山篠貴史; 水野猛; 加藤雅士; 小林哲夫
    日本農芸化学会中部支部第147回例会  2006/10
  • EDTA鉄を利用した新しい嫌気性アンモニア酸化反応
    澤山茂樹; 松鹿昭則; 井上宏之
    第58回日本生物工学会大会  2006/09
  • 糸状菌Aspergillus nidulansにおける His-Asp リン酸リレー情報伝達系のin vitro解析
    東信宏; 金丸京子; 松鹿昭則; 山篠貴史; 水野猛; 加藤雅士; 小林哲夫
    日本農芸化学会大会2006年度大会  2006/03
  • シロイヌナズナの時計関連 PRR ファミリー因子の分子解剖による構造と機能解析
    松鹿昭則; 河村正和; 山篠貴史; 水野猛
    植物生理学会2006年度年会および第47回シンポジウム  2006/03
  • シロイヌナズナの時計関連PRRファミリー因子の構造と機能
    松鹿昭則; 山篠貴史; 水野猛
    植物生理学会2005年度年会および第46回シンポジウム  2005/03
  • 時計関連因子をコードするシロイヌナズナAPRR9遺伝子:光シグナル及び時計により制御されるプロモーター構造の解析
    伊藤照悟; 中道範人; 松鹿昭則; 藤森徹; 山篠貴史; 水野猛
    植物生理学会2005年度年会および第46回シンポジウム  2005/03
  • シロイヌナズナにおける時計関連APRR1/TOC1ファミリーの五重奏 : APRR9の機能解析
    伊藤照悟; 松鹿昭則; 山田寿美; 佐藤修正; 加藤友彦; 田畑哲之; 山篠貴史; 水野猛
    第26回日本分子生物学会年会  2003/12
  • The circadian-associated APRR1/TOC1 quintet of Arabidopsis thaliana, (II) : Characterization of the light-induced member, APRR9
    松鹿昭則; 伊藤照悟; 山篠貴史; 佐藤修生; 加藤友彦; 田畑哲之; 水野猛
    American Society of Plant Biologists Annual Meeting 2003  2003/07
  • シロイヌナズナ時計関連因子 APRR9の機能解析
    松鹿昭則; 伊藤照悟; 山篠貴史; 加藤友彦; 佐藤修正; 田畑哲彦; 水野猛
    植物生理学会2003年度年会および第44回シンポジウム  2003/03
  • シロイヌナズナにおける時計関連APRR1/TOC1ファミリーの五重奏 : APRR9の機能解析
    松鹿昭則; 山篠貴史; 水野猛
    第25回日本分子生物学会年会  2002/12
  • The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana : [I], Characterization in APRR1-ox and CCA1-ox plants
    松鹿昭則; 山篠貴史; 水野猛
    植物生理学会2002年度年会および第43回シンポジウム  2002/03
  • シロイヌナズナにおける時計関連遺伝子群PRR1/TOC1ファミリー : PRR1過剰発現系を用いた解析
    松鹿昭則; 山篠貴史; 牧野聖也; 水野猛
    第24回日本分子生物学会年会  2001/12
  • シロイヌナズナにおけるサーカディアンリズム関連遺伝子群APRR1/TOC1ファミリーの解析 (II) : 何時どのようにしてサーカディアンウェイブは開始するのか?
    松鹿昭則; 牧野聖也; 小島正也; 水野猛
    植物生理学会2001年度年会および第41回シンポジウム  2001/03
  • シロイヌナズナにおけるサーカディアンリズム関連遺伝子群APRR1/TOC1ファミリーの解析 (I) : 擬似レスポンスギュレーターの発現とサーカディアンウェイブ
    牧野聖也; 松鹿昭則; 小島正也; 水野猛
    植物生理学会2001年度年会および第41回シンポジウム  2001/03
  • シロイヌナズナの擬似レギュレーター APRR1/TOC1 ファミリーの解析
    松鹿昭則; 牧野聖也; 小島正也; 水野猛
    第23回日本分子生物学会年会  2000/12
  • シロイヌナズナにおける概日性時計構成因子としての擬似レスポンスレギュレーター因子群の解析
    牧野聖也; 松鹿昭則; 小島正也; 木羽隆敏; 今村綾; 谷口光隆; 杉山達夫; 水野猛
    日本時間生物学会  2000/11
  • 大腸菌の多機能センサーArcBの分子機能及び構造解析
    松鹿昭則; 水野猛
    第22回日本分子生物学会年会  1999/12
  • 大腸菌の多機能センサーArcBの分子機能及び構造解析
    松鹿昭則; 水野猛
    日本農芸化学会1999年度大会  1999/04
  • 大腸菌の多機能センサーArcBの分子機能及び構造解析
    松鹿昭則; 武田真一郎; 水野猛
    第21回日本分子生物学会年会  1998/12
  • 大腸菌ArcBセンサーの新規 His-Asp 転移 (HPt) ドメインの構造と機能解析
    松鹿昭則; 荻野智章; 山篠貴史; 水野猛
    日本農芸化学会1998年度大会  1998/04
  • 好熱菌Bacillus flavocaldarius KP 1228 のgroESLのオペロンのクローニング
    松鹿昭則; 柏原真一; 鈴木讓
    日本農芸化学会1997年度大会  1997/04
  • 高度好熱菌Bacillus flavocaldarius KP1228のgroESLオペロンの単離とその構造
    松鹿昭則; 柏原真一; 鈴木讓
    日本農芸化学会関西支部 第394回講演会  1996/05
  • バイオ燃料製造の有用要素技術開発事業/有用微生物を用いた発酵生産技術の研究開発/C5C6糖同時発酵微生物の開発
    松鹿昭則
    NEDO有用要素技術開発事業 第4回研究開発推進委員会

Courses

  • KINDAI SeminarKINDAI Seminar Fuculty of Engineering, Kindai University
  • Laboratory Work in Environmental Science and Biotechnology,Biotechnology groupLaboratory Work in Environmental Science and Biotechnology,Biotechnology group Fuculty of Engineering, Kindai University
  • Fundamental Experiments in Biotechnology and ChemistryFundamental Experiments in Biotechnology and Chemistry Fuculty of Engineering, Kindai University
  • Seminar for Graduation ThesisSeminar for Graduation Thesis Fuculty of Engineering, Kindai University
  • Food ChemistryFood Chemistry Faculty of Engineering, Kindai University
  • Fundamental Practice in Biotechnology and ChemistryFundamental Practice in Biotechnology and Chemistry Fuculty of Engineering, Kindai University
  • Laboratory Work in Material ChemistryLaboratory Work in Material Chemistry Kindai University, Faculty of Engineering
  • Green ChemistryGreen Chemistry Kindai University, Faculty of Engineering
  • Bachelor of Engineering ThesisBachelor of Engineering Thesis Kindai University, Faculty of Engineering
  • Food EngineeringFood Engineering Fuculty of Engineering, Kindai University
  • Outlines of Chemistry Ⅱ, InternationalOutlines of Chemistry Ⅱ, International Faculty of Engineering, Kindai University
  • Synthetic SeminarSynthetic Seminar Faculty of Engineering, Kindai University

Affiliated academic society

  • THE MOLECULAR BIOLOGY SOCIETY OF JAPAN   THE SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, JAPAN   JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY   中国地域バイオマス利用研究会   酵母遺伝学フォーラム   

Research Themes

  • Searching for gene resources from non-conventional yeasts to elucidate environmental adaptation mechanisms
    公益財団法人 発酵研究所:公益財団法人発酵研究所 2025年度 一般研究助成
    Date (from‐to) : 2025/04 -2027/03
  • Development of novel thermotolerant yeasts with acid stress tolerance and their application to fermentation production
    Yamaguchi University Research Center for Thermotolerant Microbial Resources (RCTMR):公募型共同研究
    Date (from‐to) : 2024/04 -2026/03 
    Author : 松鹿 昭則 (近畿大学工学部)、山田 守 (中高温微生物研究センター)
  • 農業廃棄物を原料とする食品用新素材の開発とその応用
    (公財)古川技術振興財団 研究助成金
    Date (from‐to) : 2024/04 -2025/03
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)
    Date (from‐to) : 2022/04 -2025/03 
    Author : 松鹿 昭則
  • 植物資源の利活用を目指した前処理およびバイオ変換技術ならびに食品中のD-アミノ酸含有量に関する研究
    国立研究開発法人 産業技術総合研究所:共同研究
    Date (from‐to) : 2021/06 -2025/03 
    Author : 松鹿 昭則
  • Concentration and selectivity evaluation of microorganisms and biomolecules using magnetic nanoparticles for high-sensitivity separation
    JNC Corporation:Joint Research
    Date (from‐to) : 2023/04 -2024/03 
    Author : 白石浩平; 松鹿昭則; 櫻井伸樹
  • Selection and breeding of optimal yeast for high-temperature xylose fermentation
    Yamaguchi University Research Center for Thermotolerant Microbial Resources (RCTMR):2023年度 公募型共同研究
    Date (from‐to) : 2023/04 -2024/03 
    Author : 松鹿 昭則 (近畿大学工学部)、山田 守 (中高温微生物研究センター)
  • 未利用柑橘資源を利用した機能性材料の開発と食品への応用
    (公財)サタケ技術振興財団:2022年度 大学研究助成金
    Date (from‐to) : 2022/04 -2023/03 
    Author : 松鹿 昭則
  • 食品変敗微生物のゲノムDNAライブラリーの構築と有用遺伝子のスクリーニング
    (公財)飯島藤十郎記念食品科学振興財団:2022年度学術研究助成
    Date (from‐to) : 2022/04 -2023/03 
    Author : 松鹿 昭則
  • 合成ガスからのバイオケミカル原料製造技術の開発
    新エネルギー・産業技術総合開発機構:NEDO先導研究プログラム
    Date (from‐to) : 2020/06 -2021/03 
    Author : 中島田豊
  • 再生可能エネルギーを活用した有用物質高生産微生物デザイン
    国立研究開発法人科学技術振興機構:未来社会創造事業
    Date (from‐to) : 2018/07 -2021/03 
    Author : 中島田豊
  • Japan Society for the Promotion of Science:Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)
    Date (from‐to) : 2018/04 -2021/03 
    Author : Kimura Zen-ichiro
     
    The electrofermentation process is a biomanufacturing process that utilizes bacteria that eat electricity (electrode oxidizing bacteria; EUB) and bacteria that generates electricity (electrode reducing bacteria).In this study, we aimed to improve the electro-fermentation process by isolating two types of bacteria that contribute to the enhancement of electron flux in the electroreduction tank (4.1-4-2 in the main text of the report), cultivating an accumulation of aerobic EUB that contribute to the enhancement of electron flux in the cathode chamber (4-3), the development of solid phase culture system to expand the bioresources of EUB (4.4), and the establishment of a genome editing systems for EUB to accelerate the genetic modification of EUB (4.5).
  • 並行複発酵に最適なキシロース発酵性酵母創製に向けた基盤研究
    日本学術振興会:科学研究費助成事業:基盤研究 (C)
    Date (from‐to) : 2016/04 -2019/03 
    Author : 松鹿 昭則
  • 有用微生物を用いた発酵生産技術の開発
    新エネルギー・産業技術総合開発機構:NEDO バイオ燃料製造の有用要素技術開発事業
    Date (from‐to) : 2013/04 -2017/03 
    Author : 種田 大介
  • 早生樹からのメカノケミカルパルピング前処理によるエタノール一貫生産システムの開発
    新エネルギー・産業技術総合開発機構:NEDO セルロース系エタノール革新的生産システム開発事業
    Date (from‐to) : 2009/04 -2014/03 
    Author : 杉浦 純
  • セルロース系バイオ燃料の生産に適合した酵素生産糸状菌およびバイオ燃料生産微生物の開発に関する研究
    経済産業省:日米エネルギー環境技術研究・標準化協力事業
    Date (from‐to) : 2010/04 -2013/03 
    Author : 坂西 欣也
  • サトウキビ廃棄物からのエタノール生産研究
    JST / JICA:SATREPS
    Date (from‐to) : 2009/04 -2013/03 
    Author : Kinya Sakanishi
  • 稲わら水熱・酵素糖化・エタノール発酵基盤技術の研究開発
    農林水産省:バイオ燃料変換技術研究開発(稲わら変換総合技術の開発)
    Date (from‐to) : 2007/04 -2012/03 
    Author : 澤山 茂樹
  • メカノケミカルパルピングを利用したバイオエタノール生産技術研究開発
    新エネルギー・産業技術総合開発機構:NEDO加速的先導技術
    Date (from‐to) : 2008/04 -2010/03 
    Author : 坂西 欣也
  • ワンバッチ式バイオエタノール製造技術の研究開発
    新エネルギー・産業技術総合開発機構:NEDOバイオマスエネルギー先導技術研究開発
    Date (from‐to) : 2006/04 -2009/03 
    Author : 坂西 欣也
  • 日本学術振興会:科学研究費助成事業:特別研究員奨励費
    Date (from‐to) : 2000/04 -2003/03 
    Author : 水野 猛
     
    多段階His-Aspリン酸リレーに関与する典型的な環境センサーである大腸菌のArcBは細胞内代謝物であるNAD^+をシグナルとしてArcBドメイン内のPASドメインを介してシグナルを感知しているということを明らかにした。 また最近、高等植物のシロイヌナズナの擬似レギュレーターAPRRが5種類存在することを発見し、それらの転写発現が全てサーカディアンリズムを示すことを明らかにした。しかも、APRR9→APRR7→APRR5→APRR3→APRR1の順に規則正しく発現リズムを刻んだ(APRR五重奏)。さらに初発のAPRR9が光誘導性であることも明らかにした。 今回、APRRファミリーが時を刻む機構と関連しているか否かを更に検討するために、時計関連遺伝子CCA1構成的発現植物体に加え、APRR1構成的発現植物体を用いて、これらの変異植物体におけるAPRRファミリーの発現様式を詳細に解析した。その結果、得られた新規の重要な知見としては、APRRファミリーとCCA1/LHYのサーカディアン発現リズムが強く相互に影響を与えること、さらにはAPRR1がyeast two-hybridによるスクリーニングによってAPRR1と相互作用する遺伝子として取得したPIL1と共に転写活性化因子であるPIF3の機能を抑制することでAPRR9の発現を抑制していることであった。PIL1はbHLHモチーフをもつタンパク質であり、そのbHLH領域はフィトクロム相互作用因子であるPIF3のbHLH領域と非常に高い相同性を示した。以上の結果から、APRRファミリーはシロイヌナズナの概日時計と深く関わった働きをしていることが強く支持された。

Industrial Property Rights